How Far Are AI Scientists from Changing the World?
- URL: http://arxiv.org/abs/2507.23276v2
- Date: Fri, 01 Aug 2025 12:49:36 GMT
- Title: How Far Are AI Scientists from Changing the World?
- Authors: Qiujie Xie, Yixuan Weng, Minjun Zhu, Fuchen Shen, Shulin Huang, Zhen Lin, Jiahui Zhou, Zilan Mao, Zijie Yang, Linyi Yang, Jian Wu, Yue Zhang,
- Abstract summary: We focus on the central question: How far are AI scientists from changing the world and reshaping the scientific research paradigm?<n>We provide a prospect-driven review that comprehensively analyzes the current achievements of AI Scientist systems.<n>We hope this survey will contribute to a clearer understanding of limitations of current AI Scientist systems.
- Score: 30.483767443654504
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The emergence of large language models (LLMs) is propelling automated scientific discovery to the next level, with LLM-based Artificial Intelligence (AI) Scientist systems now taking the lead in scientific research. Several influential works have already appeared in the field of AI Scientist systems, with AI-generated research papers having been accepted at the ICLR 2025 workshop, suggesting that a human-level AI Scientist capable of uncovering phenomena previously unknown to humans, may soon become a reality. In this survey, we focus on the central question: How far are AI scientists from changing the world and reshaping the scientific research paradigm? To answer this question, we provide a prospect-driven review that comprehensively analyzes the current achievements of AI Scientist systems, identifying key bottlenecks and the critical components required for the emergence of a scientific agent capable of producing ground-breaking discoveries that solve grand challenges. We hope this survey will contribute to a clearer understanding of limitations of current AI Scientist systems, showing where we are, what is missing, and what the ultimate goals for scientific AI should be.
Related papers
- Position: Intelligent Science Laboratory Requires the Integration of Cognitive and Embodied AI [98.19195693735487]
We propose the paradigm of Intelligent Science Laboratories (ISLs)<n>ISLs are a multi-layered, closed-loop framework that deeply integrates cognitive and embodied intelligence.<n>We argue that such systems are essential for overcoming the current limitations of scientific discovery.
arXiv Detail & Related papers (2025-06-24T13:31:44Z) - AI Scientists Fail Without Strong Implementation Capability [33.232300349142285]
The emergence of Artificial Intelligence (AI) Scientist represents a paradigm shift in scientific discovery.<n>Recent AI Scientist studies demonstrate sufficient capabilities for independent scientific discovery.<n>Despite this substantial progress, AI Scientist has yet to produce a groundbreaking achievement in the domain of computer science.
arXiv Detail & Related papers (2025-06-02T06:59:10Z) - AI-Driven Automation Can Become the Foundation of Next-Era Science of Science Research [58.944125758758936]
The Science of Science (SoS) explores the mechanisms underlying scientific discovery.<n>The advent of artificial intelligence (AI) presents a transformative opportunity for the next generation of SoS.<n>We outline the advantages of AI over traditional methods, discuss potential limitations, and propose pathways to overcome them.
arXiv Detail & Related papers (2025-05-17T15:01:33Z) - The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search [16.93028430619359]
The AI Scientist-v2 is an end-to-end agentic system capable of producing the first entirely AI generated peer-review-accepted workshop paper.<n>It iteratively formulates scientific hypotheses, designs and executes experiments, analyzes and visualizes data, and autonomously authors scientific manuscripts.<n>One manuscript achieved high enough scores to exceed the average human acceptance threshold, marking the first instance of a fully AI-generated paper successfully navigating a peer review.
arXiv Detail & Related papers (2025-04-10T18:44:41Z) - Scaling Laws in Scientific Discovery with AI and Robot Scientists [72.3420699173245]
An autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle.<n>AGS aims to significantly reduce the time and resources needed for scientific discovery.<n>As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws.
arXiv Detail & Related papers (2025-03-28T14:00:27Z) - Unlocking the Potential of AI Researchers in Scientific Discovery: What Is Missing? [20.94708392671015]
We project that AI4Science's share of total publications will rise from 3.57% in 2024 to approximately 25% by 2050.<n>We propose structured and actionable strategies to position AI researchers at the forefront of scientific discovery.
arXiv Detail & Related papers (2025-03-05T09:29:05Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.<n>Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - Towards Scientific Discovery with Generative AI: Progress, Opportunities, and Challenges [11.232704182001253]
This paper examines the current state of AI for scientific discovery, highlighting recent progress in large language models and other AI techniques applied to scientific tasks.<n>We then outline key challenges and promising research directions toward developing more comprehensive AI systems for scientific discovery.
arXiv Detail & Related papers (2024-12-16T03:52:20Z) - Drivers and Barriers of AI Adoption and Use in Scientific Research [0.0]
We study the integration of AI in scientific research, focusing on the human capital of scientists and the external resources available within their network of collaborators and institutions.
Our results suggest that AI is pioneered by domain scientists with a taste for exploration' and who are embedded in a network rich of computer scientists, experienced AI scientists and early-career researchers.
arXiv Detail & Related papers (2023-12-15T14:49:13Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.