論文の概要: Neural shape reconstruction from multiple views with static pattern projection
- arxiv url: http://arxiv.org/abs/2506.01389v1
- Date: Mon, 02 Jun 2025 07:29:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:34.08911
- Title: Neural shape reconstruction from multiple views with static pattern projection
- Title(参考訳): 静的パターン投影を用いた複数視点からのニューラル形状再構成
- Authors: Ryo Furukawa, Kota Nishihara, Hiroshi Kawasaki,
- Abstract要約: カメラとプロジェクタの両方が動いている間、複数の画像をキャプチャして対象物体の形状を復元する手法を提案する。
合成画像と実画像の両方を用いて3次元再構成を行った。
- 参考スコア(独自算出の注目度): 0.6788409324489684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active-stereo-based 3D shape measurement is crucial for various purposes, such as industrial inspection, reverse engineering, and medical systems, due to its strong ability to accurately acquire the shape of textureless objects. Active stereo systems typically consist of a camera and a pattern projector, tightly fixed to each other, and precise calibration between a camera and a projector is required, which in turn decreases the usability of the system. If a camera and a projector can be freely moved during shape scanning process, it will drastically increase the convenience of the usability of the system. To realize it, we propose a technique to recover the shape of the target object by capturing multiple images while both the camera and the projector are in motion, and their relative poses are auto-calibrated by our neural signed-distance-field (NeuralSDF) using novel volumetric differential rendering technique. In the experiment, the proposed method is evaluated by performing 3D reconstruction using both synthetic and real images.
- Abstract(参考訳): 産業検査,リバースエンジニアリング,医療システムなど,テクスチャレスオブジェクトの形状を正確に取得する能力が強いため,アクティブステレオベースの3次元形状測定は様々な目的に不可欠である。
アクティブステレオシステムは通常、カメラとパターンプロジェクターで構成され、互いに密に固定され、カメラとプロジェクターの正確な校正が必要であるため、システムの使用性が低下する。
形状スキャン中にカメラとプロジェクターを自由に移動させることができれば、システムの利便性を大幅に向上させることができる。
そこで本研究では,カメラとプロジェクタの両方が動作中,複数の画像をキャプチャして対象物体の形状を復元する手法を提案し,その相対的なポーズを新しいボリューム差分レンダリング技術を用いてニューラルサイン距離場(NeuralSDF)によって自動校正する。
実験では,合成画像と実画像の両方を用いて3次元再構成を行った。
関連論文リスト
- Incorporating dense metric depth into neural 3D representations for view synthesis and relighting [25.028859317188395]
ロボット応用では、密度の深い距離の深さをステレオで直接測定することができ、照明を制御できる。
本研究は,ニューラルネットワークによる3次元表現のトレーニングに高密度な距離深度を組み込む手法を実証する。
また、パイプラインに必要なデータを取得し、リライティングとビュー合成の結果を示すために開発されたマルチフラッシュステレオカメラシステムについても論じる。
論文 参考訳(メタデータ) (2024-09-04T20:21:13Z) - Towards 3D Vision with Low-Cost Single-Photon Cameras [24.711165102559438]
小型で省エネで低コストな単光子カメラによる計測に基づいて,任意のランベルト物体の3次元形状を再構成する手法を提案する。
我々の研究は、画像ベースモデリングとアクティブレンジスキャンの関連性を引き合いに出し、単光子カメラによる3Dビジョンに向けた一歩である。
論文 参考訳(メタデータ) (2024-03-26T15:40:05Z) - Learning Photometric Feature Transform for Free-form Object Scan [44.21941847090453]
本研究では,非構造化ビューから自動で測光データを収集・変換するフレームワークを提案する。
我々は手持ちスキャンから様々な挑戦対象の幾何学的および異方的反射を再構築するシステムを構築した。
結果はプロの3Dスキャナーと写真からの復元に対して検証され、最先端技術と好適に比較される。
論文 参考訳(メタデータ) (2023-08-07T11:34:27Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
本稿では,3次元オートデコーダをコアとした静的・明瞭な3次元アセットの生成に対して,新しいアプローチを提案する。
3D Autodecoderフレームワークは、ターゲットデータセットから学んだプロパティを潜時空間に埋め込む。
次に、適切な中間体積潜在空間を特定し、ロバストな正規化と非正規化演算を導入する。
論文 参考訳(メタデータ) (2023-07-07T17:59:14Z) - Farm3D: Learning Articulated 3D Animals by Distilling 2D Diffusion [67.71624118802411]
本稿では,カテゴリー固有の3D再構成器の学習方法であるFarm3Dについて述べる。
本稿では,Stable Diffusion などの画像生成装置を用いて,合成学習データを生成するフレームワークを提案する。
我々のネットワークは、単分子再構成や合成などの分析に利用でき、ビデオゲームのようなリアルタイムアプリケーションのための音響資産を生成することができる。
論文 参考訳(メタデータ) (2023-04-20T17:59:34Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
そこで我々は,インターネット写真コレクションから効率よく高精度な表面再構成を実現する新しい手法を提案する。
そこで本研究では,これらのシーンにおける再構成性能を評価するための新しいベンチマークとプロトコルを提案する。
論文 参考訳(メタデータ) (2022-05-25T17:59:53Z) - Polka Lines: Learning Structured Illumination and Reconstruction for
Active Stereo [52.68109922159688]
本稿では,波動光学と幾何光学の両方に依存した,アクティブステレオのための新しい微分可能な画像形成モデルと,新しい三眼再構成ネットワークを提案する。
Polka Lines" を再現ネットワークと組み合わせた共同最適化パターンは, 撮像条件全体にわたって, 最先端のアクティブステレオ深度推定を達成している。
論文 参考訳(メタデータ) (2020-11-26T04:02:43Z) - Vid2Curve: Simultaneous Camera Motion Estimation and Thin Structure
Reconstruction from an RGB Video [90.93141123721713]
ワイヤーフレーム彫刻、フェンス、ケーブル、電力線、木の枝などの細い構造は現実世界では一般的である。
従来の画像ベースや深度ベースの再構築手法を用いて3Dデジタルモデルを入手することは極めて困難である。
ハンドヘルドカメラで撮影したカラービデオから,カメラの動きを同時に推定し,複雑な3次元薄膜構造の形状を高品質に再構成する手法を提案する。
論文 参考訳(メタデータ) (2020-05-07T10:39:20Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
空間校正カメラで撮影した多視点画像から3次元ポーズを復元する手法を提案する。
我々は3次元形状を利用して、入力画像をカメラ視点から切り離したポーズの潜在表現に融合する。
アーキテクチャは、カメラプロジェクション演算子に学習した表現を条件付け、ビュー当たりの正確な2次元検出を生成する。
論文 参考訳(メタデータ) (2020-04-05T12:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。