Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
- URL: http://arxiv.org/abs/2506.01413v5
- Date: Tue, 29 Jul 2025 04:42:12 GMT
- Title: Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
- Authors: Yulei Qin, Gang Li, Zongyi Li, Zihan Xu, Yuchen Shi, Zhekai Lin, Xiao Cui, Ke Li, Xing Sun,
- Abstract summary: Chain-of-thought (CoT) is expected to universally improve capabilities of large language models (LLMs)<n>We propose RAIF, a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling.<n>We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement.
- Score: 26.401130750061323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose RAIF, a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Evaluation on OOD constraints also confirms the generalizability of our RAIF. Codes and data are available at https://github.com/yuleiqin/RAIF. Keywords: reinforcement learning with verifiable rewards (RLVR), instruction following, complex instructions
Related papers
- Light-IF: Endowing LLMs with Generalizable Reasoning via Preview and Self-Checking for Complex Instruction Following [10.119219532863767]
lazy reasoning during the thinking stage is the primary factor contributing to poor instruction adherence.<n>We propose a comprehensive framework designed to enable rigorous reasoning processes involving preview and self-checking.<n>Our Light-IF-32B model surpasses both larger open-source models such as DeepSeek-R1 and closed-source models like Doubao-1.6.
arXiv Detail & Related papers (2025-08-05T07:42:00Z) - Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
Large language models (LLMs) have recently demonstrated remarkable progress in reasoning capabilities through reinforcement learning with verifiable rewards (RLVR)<n>We present a theoretical characterization of LLM reasoning grounded in information bottleneck (IB) principle.<n>We propose IB-aware reasoning optimization (IBRO), a framework that encourages reasoning trajectories to be both informative about the final correct answer and generalizable.
arXiv Detail & Related papers (2025-07-24T13:14:25Z) - Reason-to-Recommend: Using Interaction-of-Thought Reasoning to Enhance LLM Recommendation [9.282278040339138]
$textbfR2Rec$ is a reasoning-enhanced recommendation framework.<n>It samples interaction chains from the user-item graph and converts them into structured interaction-of-thoughts.
arXiv Detail & Related papers (2025-06-05T14:16:44Z) - Reinforced Latent Reasoning for LLM-based Recommendation [83.18146814163308]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities in complex problem-solving tasks.<n>Existing methods typically rely on fine-tuning with explicit chain-of-thought (CoT) data.<n>In this work, we explore an alternative approach that shifts from explicit CoT reasoning to compact, information-dense latent reasoning.
arXiv Detail & Related papers (2025-05-25T11:03:45Z) - ToTRL: Unlock LLM Tree-of-Thoughts Reasoning Potential through Puzzles Solving [4.987786842464663]
Tree-of-thoughts (ToT) offers a conceptually more advanced approach by modeling reasoning as an exploration within a tree structure.<n>ToTRL is designed to guide LLMs in developing the parallel ToT strategy based on the sequential CoT strategy.<n>Our ToTQwen3-8B model, trained with ToTRL, achieves significant improvement in performance and reasoning efficiency on complex reasoning tasks.
arXiv Detail & Related papers (2025-05-19T05:18:58Z) - SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs [48.28847964704554]
Chain-of-Thought (CoT) reasoning enables Large Language Models (LLMs) to solve complex reasoning tasks.<n>We propose a novel approach for continuous-space reasoning that does not require modifying the LLM.
arXiv Detail & Related papers (2025-02-17T18:52:29Z) - Constraint Back-translation Improves Complex Instruction Following of Large Language Models [55.60192044049083]
Large language models (LLMs) struggle to follow instructions with complex constraints in format, length, etc.<n>Previous works conduct post-training on complex instruction-response pairs generated by feeding complex instructions to advanced LLMs.<n>We propose a novel data generation technique, constraint back-translation.
arXiv Detail & Related papers (2024-10-31T17:42:26Z) - Enhancing LLM's Cognition via Structurization [41.13997892843677]
Large language models (LLMs) process input contexts through a causal and sequential perspective.
This paper presents a novel concept of context structurization.
Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements.
arXiv Detail & Related papers (2024-07-23T12:33:58Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Can Separators Improve Chain-of-Thought Prompting? [10.398343318429367]
Chain-of-thought (CoT) prompting is a simple and effective method for improving the reasoning capabilities of Large Language Models (LLMs)
Inspired by human cognition, we introduce COT-SEP, a method that strategically employs separators at the end of each exemplar in CoT prompting.
arXiv Detail & Related papers (2024-02-16T12:46:16Z) - Large Language Models as an Indirect Reasoner: Contrapositive and Contradiction for Automated Reasoning [74.90592233107712]
We propose a Direct-Indirect Reasoning (DIR) method, which considers Direct Reasoning (DR) and Indirect Reasoning (IR) as multiple parallel reasoning paths that are merged to derive the final answer.<n>Our DIR method is simple yet effective and can be straightforwardly integrated with existing variants of CoT methods.
arXiv Detail & Related papers (2024-02-06T03:41:12Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-thought (CoT) prompting is a popular in-context learning approach for large language models (LLMs)<n>This paper introduces a new approach named Latent Reasoning Skills (LaRS) that employs unsupervised learning to create a latent space representation of rationales.
arXiv Detail & Related papers (2023-12-07T20:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.