SEMNAV: A Semantic Segmentation-Driven Approach to Visual Semantic Navigation
- URL: http://arxiv.org/abs/2506.01418v1
- Date: Mon, 02 Jun 2025 08:19:41 GMT
- Title: SEMNAV: A Semantic Segmentation-Driven Approach to Visual Semantic Navigation
- Authors: Rafael Flor-Rodríguez, Carlos Gutiérrez-Álvarez, Francisco Javier Acevedo-Rodríguez, Sergio Lafuente-Arroyo, Roberto J. López-Sastre,
- Abstract summary: Visual Semantic Navigation (VSN) is a fundamental problem in robotics, where an agent must navigate toward a target object in an unknown environment.<n>Most state-of-the-art VSN models are trained in simulation environments, where rendered scenes of the real world are used, at best.<n>We propose SEMNAV, a novel approach that leverages semantic segmentation as the main visual input representation of the environment.
- Score: 1.2582887633807602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual Semantic Navigation (VSN) is a fundamental problem in robotics, where an agent must navigate toward a target object in an unknown environment, mainly using visual information. Most state-of-the-art VSN models are trained in simulation environments, where rendered scenes of the real world are used, at best. These approaches typically rely on raw RGB data from the virtual scenes, which limits their ability to generalize to real-world environments due to domain adaptation issues. To tackle this problem, in this work, we propose SEMNAV, a novel approach that leverages semantic segmentation as the main visual input representation of the environment to enhance the agent's perception and decision-making capabilities. By explicitly incorporating high-level semantic information, our model learns robust navigation policies that improve generalization across unseen environments, both in simulated and real world settings. We also introduce a newly curated dataset, i.e. the SEMNAV dataset, designed for training semantic segmentation-aware navigation models like SEMNAV. Our approach is evaluated extensively in both simulated environments and with real-world robotic platforms. Experimental results demonstrate that SEMNAV outperforms existing state-of-the-art VSN models, achieving higher success rates in the Habitat 2.0 simulation environment, using the HM3D dataset. Furthermore, our real-world experiments highlight the effectiveness of semantic segmentation in mitigating the sim-to-real gap, making our model a promising solution for practical VSN-based robotic applications. We release SEMNAV dataset, code and trained models at https://github.com/gramuah/semnav
Related papers
- From Seeing to Experiencing: Scaling Navigation Foundation Models with Reinforcement Learning [59.88543114325153]
We introduce the Seeing-to-Experiencing framework to scale the capability of navigation foundation models with reinforcement learning.<n>S2E combines the strengths of pre-training on videos and post-training through RL.<n>We establish a comprehensive end-to-end evaluation benchmark, NavBench-GS, built on photorealistic 3DGS reconstructions of real-world scenes.
arXiv Detail & Related papers (2025-07-29T17:26:10Z) - WMNav: Integrating Vision-Language Models into World Models for Object Goal Navigation [6.463198014180394]
We introduce WMNav, a novel World Model-based Navigation framework powered by Vision-Language Models (VLMs)<n>It predicts possible outcomes of decisions and builds memories to provide feedback to the policy module.<n>By decomposing according to a human-like thinking process, WMNav effectively alleviates the impact of model hallucination.
arXiv Detail & Related papers (2025-03-04T03:51:36Z) - Ground-level Viewpoint Vision-and-Language Navigation in Continuous Environments [10.953629652228024]
Vision-and-Language Navigation (VLN) agents associate time-sequenced visual observations with corresponding instructions to make decisions.<n>In this paper, we address the mismatch between human-centric instructions and quadruped robots with a low-height field of view.<n>We propose a Ground-level Viewpoint Navigation (GVNav) approach to mitigate this issue.
arXiv Detail & Related papers (2025-02-26T10:30:40Z) - Learning from the Giants: A Practical Approach to Underwater Depth and Surface Normals Estimation [3.0516727053033392]
This paper presents a novel deep learning model for Monocular Depth and Surface Normals Estimation (MDSNE)
It is specifically tailored for underwater environments, using a hybrid architecture that integrates CNNs with Transformers.
Our model reduces parameters by 90% and training costs by 80%, allowing real-time 3D perception on resource-constrained devices.
arXiv Detail & Related papers (2024-10-02T22:41:12Z) - PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning [13.564676246832544]
We introduce PLANRL, a framework that chooses when the robot should use classical motion planning and when it should learn a policy.
PLANRL switches between two modes of operation: reaching a waypoint using classical techniques when away from the objects and fine-grained manipulation control when about to interact with objects.
We evaluate our approach across multiple challenging simulation environments and real-world tasks, demonstrating superior performance in terms of adaptability, efficiency, and generalization compared to existing methods.
arXiv Detail & Related papers (2024-08-07T19:30:08Z) - Interactive Semantic Map Representation for Skill-based Visual Object
Navigation [43.71312386938849]
This paper introduces a new representation of a scene semantic map formed during the embodied agent interaction with the indoor environment.
We have implemented this representation into a full-fledged navigation approach called SkillTron.
The proposed approach makes it possible to form both intermediate goals for robot exploration and the final goal for object navigation.
arXiv Detail & Related papers (2023-11-07T16:30:12Z) - NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
This paper describes how we can train a single unified diffusion policy to handle both goal-directed navigation and goal-agnostic exploration.
We show that this unified policy results in better overall performance when navigating to visually indicated goals in novel environments.
Our experiments, conducted on a real-world mobile robot platform, show effective navigation in unseen environments in comparison with five alternative methods.
arXiv Detail & Related papers (2023-10-11T21:07:14Z) - Learning Navigational Visual Representations with Semantic Map
Supervision [85.91625020847358]
We propose a navigational-specific visual representation learning method by contrasting the agent's egocentric views and semantic maps.
Ego$2$-Map learning transfers the compact and rich information from a map, such as objects, structure and transition, to the agent's egocentric representations for navigation.
arXiv Detail & Related papers (2023-07-23T14:01:05Z) - ESC: Exploration with Soft Commonsense Constraints for Zero-shot Object
Navigation [75.13546386761153]
We present a novel zero-shot object navigation method, Exploration with Soft Commonsense constraints (ESC)
ESC transfers commonsense knowledge in pre-trained models to open-world object navigation without any navigation experience.
Experiments on MP3D, HM3D, and RoboTHOR benchmarks show that our ESC method improves significantly over baselines.
arXiv Detail & Related papers (2023-01-30T18:37:32Z) - Navigating to Objects in the Real World [76.1517654037993]
We present a large-scale empirical study of semantic visual navigation methods comparing methods from classical, modular, and end-to-end learning approaches.
We find that modular learning works well in the real world, attaining a 90% success rate.
In contrast, end-to-end learning does not, dropping from 77% simulation to 23% real-world success rate due to a large image domain gap between simulation and reality.
arXiv Detail & Related papers (2022-12-02T01:10:47Z) - Image-based Navigation in Real-World Environments via Multiple Mid-level
Representations: Fusion Models, Benchmark and Efficient Evaluation [13.207579081178716]
In recent learning-based navigation approaches, the scene understanding and navigation abilities of the agent are achieved simultaneously.
Unfortunately, even if simulators represent an efficient tool to train navigation policies, the resulting models often fail when transferred into the real world.
One possible solution is to provide the navigation model with mid-level visual representations containing important domain-invariant properties of the scene.
arXiv Detail & Related papers (2022-02-02T15:00:44Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments.
We propose a modular system called, Goal-Oriented Semantic Exploration' which builds an episodic semantic map and uses it to explore the environment efficiently.
arXiv Detail & Related papers (2020-07-01T17:52:32Z) - Counterfactual Vision-and-Language Navigation via Adversarial Path Sampling [65.99956848461915]
Vision-and-Language Navigation (VLN) is a task where agents must decide how to move through a 3D environment to reach a goal.<n>One of the problems of the VLN task is data scarcity since it is difficult to collect enough navigation paths with human-annotated instructions for interactive environments.<n>We propose an adversarial-driven counterfactual reasoning model that can consider effective conditions instead of low-quality augmented data.
arXiv Detail & Related papers (2019-11-17T18:02:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.