ShaTS: A Shapley-based Explainability Method for Time Series Artificial Intelligence Models applied to Anomaly Detection in Industrial Internet of Things
- URL: http://arxiv.org/abs/2506.01450v1
- Date: Mon, 02 Jun 2025 09:07:27 GMT
- Title: ShaTS: A Shapley-based Explainability Method for Time Series Artificial Intelligence Models applied to Anomaly Detection in Industrial Internet of Things
- Authors: Manuel Franco de la Peña, Ángel Luis Perales Gómez, Lorenzo Fernández Maimó,
- Abstract summary: This work presents ShaTS (Shapley values for Time Series models), which is a model-agnostic explainable Artificial Intelligence method designed to enhance the precision of Shapley value explanations for time series models.<n> Experiments conducted on the SWaT dataset demonstrate that ShaTS accurately identifies critical time instants, precisely pinpoints the sensors, actuators, and processes affected by anomalies, and outperforms SHAP in terms of both explainability and resource efficiency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Industrial Internet of Things environments increasingly rely on advanced Anomaly Detection and explanation techniques to rapidly detect and mitigate cyberincidents, thereby ensuring operational safety. The sequential nature of data collected from these environments has enabled improvements in Anomaly Detection using Machine Learning and Deep Learning models by processing time windows rather than treating the data as tabular. However, conventional explanation methods often neglect this temporal structure, leading to imprecise or less actionable explanations. This work presents ShaTS (Shapley values for Time Series models), which is a model-agnostic explainable Artificial Intelligence method designed to enhance the precision of Shapley value explanations for time series models. ShaTS addresses the shortcomings of traditional approaches by incorporating an a priori feature grouping strategy that preserves temporal dependencies and produces both coherent and actionable insights. Experiments conducted on the SWaT dataset demonstrate that ShaTS accurately identifies critical time instants, precisely pinpoints the sensors, actuators, and processes affected by anomalies, and outperforms SHAP in terms of both explainability and resource efficiency, fulfilling the real-time requirements of industrial environments.
Related papers
- Dynamic Temporal Positional Encodings for Early Intrusion Detection in IoT [3.6686692131754834]
The rapid expansion of the Internet of Things (IoT) has introduced significant security challenges.<n>Traditional Intrusion Detection Systems (IDS) often overlook the temporal characteristics of network traffic.<n>We propose a Transformer-based Early Intrusion Detection System (EIDS) that incorporates dynamic temporal positional encodings.
arXiv Detail & Related papers (2025-06-22T17:56:19Z) - Lightweight Task-Oriented Semantic Communication Empowered by Large-Scale AI Models [66.57755931421285]
Large-scale artificial intelligence (LAI) models pose significant challenges for real-time communication scenarios.<n>This paper proposes utilizing knowledge distillation (KD) techniques to extract and condense knowledge from LAI models.<n>We propose a fast distillation method featuring a pre-stored compression mechanism that eliminates the need for repetitive inference.
arXiv Detail & Related papers (2025-06-16T08:42:16Z) - STRAP: Spatio-Temporal Pattern Retrieval for Out-of-Distribution Generalization [34.53308463024231]
We propose an innovative Spatio-Temporal Retrieval-Augmented Pattern Learning framework, STRAP.<n>During inference, STRAP retrieves relevant patterns from this library based on similarity to the current input and injects them into the model via a plug-and-play prompting mechanism.<n>Experiments across multiple real-world streaming graph datasets show that STRAP consistently outperforms state-of-the-art STGNN baselines on STOOD tasks.
arXiv Detail & Related papers (2025-05-26T06:11:05Z) - SDOoop: Capturing Periodical Patterns and Out-of-phase Anomalies in Streaming Data Analysis [45.79830400562905]
We present SDOoop, which extends the capabilities of SDO's streaming version to retain temporal information of data structures.
SDOoop spots contextual anomalies undetectable by traditional algorithms, while enabling the inspection of data geometries, clusters and temporal patterns.
We evaluated SDOoop with data from intrusion detection and natural science domains and obtained performances equivalent or superior to state-of-the-art approaches.
arXiv Detail & Related papers (2024-09-04T12:10:57Z) - Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality [39.476378833827184]
Anomaly detection in dynamic graphs presents a significant challenge due to the temporal evolution of graph structures and attributes.
We introduce a novel spatial- temporal memories-enhanced graph autoencoder (STRIPE)
STRIPE significantly outperforms existing methods with 5.8% improvement in AUC scores and 4.62X faster in training time.
arXiv Detail & Related papers (2024-03-14T02:26:10Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - An Automated Machine Learning Approach for Detecting Anomalous Peak
Patterns in Time Series Data from a Research Watershed in the Northeastern
United States Critical Zone [3.1747517745997014]
This paper presents an automated machine learning framework designed to assist hydrologists in detecting anomalies in time series data generated by sensors in a research watershed in the northeastern United States critical zone.
The framework specifically focuses on identifying peak-pattern anomalies, which may arise from sensor malfunctions or natural phenomena.
arXiv Detail & Related papers (2023-09-14T19:07:50Z) - Disentangling Spatial and Temporal Learning for Efficient Image-to-Video
Transfer Learning [59.26623999209235]
We present DiST, which disentangles the learning of spatial and temporal aspects of videos.
The disentangled learning in DiST is highly efficient because it avoids the back-propagation of massive pre-trained parameters.
Extensive experiments on five benchmarks show that DiST delivers better performance than existing state-of-the-art methods by convincing gaps.
arXiv Detail & Related papers (2023-09-14T17:58:33Z) - Latent Representation and Simulation of Markov Processes via Time-Lagged
Information Bottleneck [11.998105609001913]
We introduce an inference process that maps complex systems into a simplified representational space and models large jumps in time.
Our experiments demonstrate that T-IB learns information-optimal representations for accurately modeling the statistical properties and dynamics of the original process at a selected time lag.
arXiv Detail & Related papers (2023-09-13T15:59:14Z) - Representing Timed Automata and Timing Anomalies of Cyber-Physical
Production Systems in Knowledge Graphs [51.98400002538092]
This paper aims to improve model-based anomaly detection in CPPS by combining the learned timed automaton with a formal knowledge graph about the system.
Both the model and the detected anomalies are described in the knowledge graph in order to allow operators an easier interpretation of the model and the detected anomalies.
arXiv Detail & Related papers (2023-08-25T15:25:57Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Spatiotemporal convolutional network for time-series prediction and
causal inference [21.895413699349966]
A neural network computing framework, i.N.N., was developed to efficiently and accurately render a multistep-ahead prediction of a time series.
The framework has great potential in practical applications in artificial intelligence (AI) or machine learning fields.
arXiv Detail & Related papers (2021-07-03T06:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.