SDOoop: Capturing Periodical Patterns and Out-of-phase Anomalies in Streaming Data Analysis
- URL: http://arxiv.org/abs/2409.02973v1
- Date: Wed, 4 Sep 2024 12:10:57 GMT
- Title: SDOoop: Capturing Periodical Patterns and Out-of-phase Anomalies in Streaming Data Analysis
- Authors: Alexander Hartl, Félix Iglesias Vázquez, Tanja Zseby,
- Abstract summary: We present SDOoop, which extends the capabilities of SDO's streaming version to retain temporal information of data structures.
SDOoop spots contextual anomalies undetectable by traditional algorithms, while enabling the inspection of data geometries, clusters and temporal patterns.
We evaluated SDOoop with data from intrusion detection and natural science domains and obtained performances equivalent or superior to state-of-the-art approaches.
- Score: 45.79830400562905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Streaming data analysis is increasingly required in applications, e.g., IoT, cybersecurity, robotics, mechatronics or cyber-physical systems. Despite its relevance, it is still an emerging field with open challenges. SDO is a recent anomaly detection method designed to meet requirements of speed, interpretability and intuitive parameterization. In this work, we present SDOoop, which extends the capabilities of SDO's streaming version to retain temporal information of data structures. SDOoop spots contextual anomalies undetectable by traditional algorithms, while enabling the inspection of data geometries, clusters and temporal patterns. We used SDOoop to model real network communications in critical infrastructures and extract patterns that disclose their dynamics. Moreover, we evaluated SDOoop with data from intrusion detection and natural science domains and obtained performances equivalent or superior to state-of-the-art approaches. Our results show the high potential of new model-based methods to analyze and explain streaming data. Since SDOoop operates with constant per-sample space and time complexity, it is ideal for big data, being able to instantly process large volumes of information. SDOoop conforms to next-generation machine learning, which, in addition to accuracy and speed, is expected to provide highly interpretable and informative models.
Related papers
- Data-Augmented Predictive Deep Neural Network: Enhancing the extrapolation capabilities of non-intrusive surrogate models [0.5735035463793009]
We propose a new deep learning framework, where kernel dynamic mode decomposition (KDMD) is employed to evolve the dynamics of the latent space generated by the encoder part of a convolutional autoencoder (CAE)
After adding the KDMD-decoder-extrapolated data into the original data set, we train the CAE along with a feed-forward deep neural network using the augmented data.
The trained network can predict future states outside the training time interval at any out-of-training parameter samples.
arXiv Detail & Related papers (2024-10-17T09:26:14Z) - KODA: A Data-Driven Recursive Model for Time Series Forecasting and Data Assimilation using Koopman Operators [14.429071321401953]
We propose a Koopman operator-based approach that integrates forecasting and data assimilation in nonlinear dynamical systems.
In particular we use a Fourier domain filter to disentangle the data into a physical component whose dynamics can be accurately represented by a Koopman operator.
We show that KODA outperforms existing state of the art methods on multiple time series benchmarks.
arXiv Detail & Related papers (2024-09-29T02:25:48Z) - A Temporally Disentangled Contrastive Diffusion Model for Spatiotemporal Imputation [35.46631415365955]
We introduce a conditional diffusion framework called C$2$TSD, which incorporates disentangled temporal (trend and seasonality) representations as conditional information.
Our experiments on three real-world datasets demonstrate the superior performance of our approach compared to a number of state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-18T11:59:04Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Neural Koopman prior for data assimilation [7.875955593012905]
We use a neural network architecture to embed dynamical systems in latent spaces.
We introduce methods that enable to train such a model for long-term continuous reconstruction.
The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques.
arXiv Detail & Related papers (2023-09-11T09:04:36Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Spatiotemporal convolutional network for time-series prediction and
causal inference [21.895413699349966]
A neural network computing framework, i.N.N., was developed to efficiently and accurately render a multistep-ahead prediction of a time series.
The framework has great potential in practical applications in artificial intelligence (AI) or machine learning fields.
arXiv Detail & Related papers (2021-07-03T06:20:43Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.