論文の概要: Confidence-Aware Self-Distillation for Multimodal Sentiment Analysis with Incomplete Modalities
- arxiv url: http://arxiv.org/abs/2506.01490v1
- Date: Mon, 02 Jun 2025 09:48:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:34.182116
- Title: Confidence-Aware Self-Distillation for Multimodal Sentiment Analysis with Incomplete Modalities
- Title(参考訳): 不完全モードを用いたマルチモーダル感性分析のための信頼度を考慮した自己蒸留法
- Authors: Yanxi Luo, Shijin Wang, Zhongxing Xu, Yulong Li, Feilong Tang, Jionglong Su,
- Abstract要約: マルチモーダル感情分析は、マルチモーダルデータを通して人間の感情を理解することを目的としている。
既存のモダリティの欠如を扱う方法は、データ再構成や共通部分空間投影に基づいている。
マルチモーダルな確率的埋め込みを効果的に組み込んだ信頼性認識型自己蒸留(CASD)戦略を提案する。
- 参考スコア(独自算出の注目度): 15.205192581534973
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal sentiment analysis (MSA) aims to understand human sentiment through multimodal data. In real-world scenarios, practical factors often lead to uncertain modality missingness. Existing methods for handling modality missingness are based on data reconstruction or common subspace projections. However, these methods neglect the confidence in multimodal combinations and impose constraints on intra-class representation, hindering the capture of modality-specific information and resulting in suboptimal performance. To address these challenges, we propose a Confidence-Aware Self-Distillation (CASD) strategy that effectively incorporates multimodal probabilistic embeddings via a mixture of Student's $t$-distributions, enhancing its robustness by incorporating confidence and accommodating heavy-tailed properties. This strategy estimates joint distributions with uncertainty scores and reduces uncertainty in the student network by consistency distillation. Furthermore, we introduce a reparameterization representation module that facilitates CASD in robust multimodal learning by sampling embeddings from the joint distribution for the prediction module to calculate the task loss. As a result, the directional constraint from the loss minimization is alleviated by the sampled representation. Experimental results on three benchmark datasets demonstrate that our method achieves state-of-the-art performance.
- Abstract(参考訳): マルチモーダル感情分析(MSA)は、マルチモーダルデータを通して人間の感情を理解することを目的としている。
現実のシナリオでは、現実的な要因は、しばしば不確実なモダリティの欠如につながる。
既存のモダリティの欠如を扱う方法は、データ再構成や共通部分空間投影に基づいている。
しかし、これらの手法はマルチモーダルな組み合わせの信頼性を無視し、クラス内表現に制約を課し、モダリティ固有の情報の取得を妨げ、最適化性能を損なう。
これらの課題に対処するために,学生の$t$-distributionsの混合によるマルチモーダル確率的埋め込みを効果的に活用し,信頼性を取り入れ,重み付きプロパティを収容することで,その堅牢性を高める,信頼を意識した自己蒸留(CASD)戦略を提案する。
この戦略は, 不確実点のある連立分布を推定し, 整合蒸留による学生ネットワークの不確実性を低減する。
さらに、予測モジュールの結合分布から埋め込みをサンプリングしてタスク損失を計算することで、頑健なマルチモーダル学習におけるCASDを容易にするパラメータ化表現モジュールを提案する。
その結果、損失最小化による方向性制約はサンプル表現によって緩和される。
3つのベンチマークデータセットによる実験結果から,本手法が最先端性能を実現することを示す。
関連論文リスト
- Latent Distribution Decoupling: A Probabilistic Framework for Uncertainty-Aware Multimodal Emotion Recognition [7.25361375272096]
マルチモーダル・マルチラベル感情認識は,マルチモーダルデータにおける複数の感情の存在を同時に認識することを目的としている。
既存の研究では、マルチモーダルデータに固有のノイズであるテクスブファレラティック不確実性の影響を見落としている。
本稿では,不確かさ認識フレームワークを用いた潜在感情分布分解法を提案する。
論文 参考訳(メタデータ) (2025-02-19T18:53:23Z) - Enhancing Unimodal Latent Representations in Multimodal VAEs through Iterative Amortized Inference [20.761803725098005]
マルチモーダル変分オートエンコーダ(VAE)は、異なるデータモダリティからの情報を統合することで、共有潜在表現をキャプチャすることを目的としている。
重要な課題は、あらゆる可能なモダリティの組み合わせに対して、非現実的な数の推論ネットワークを訓練することなく、任意のモダリティのサブセットから正確に表現を推論することである。
本稿では,マルチモーダルVAEフレームワーク内での反復的改善機構であるマルチモーダル反復補正推論を導入する。
論文 参考訳(メタデータ) (2024-10-15T08:49:38Z) - Robust Multimodal Learning via Representation Decoupling [6.7678581401558295]
マルチモーダル学習はその実用性から注目を集めている。
既存の手法は、異なるモダリティの組み合わせに対して共通の部分空間表現を学習することで、この問題に対処する傾向がある。
本稿では,頑健なマルチモーダル学習を支援するために,DMRNet(Decoupled Multimodal Representation Network)を提案する。
論文 参考訳(メタデータ) (2024-07-05T12:09:33Z) - Correlation-Decoupled Knowledge Distillation for Multimodal Sentiment Analysis with Incomplete Modalities [16.69453837626083]
本稿では,Multimodal Sentiment Analysis (MSA)タスクのための相関分離型知識蒸留(CorrKD)フレームワークを提案する。
本稿では, クロスサンプル相関を含む包括的知識を伝達し, 欠落した意味論を再構築するサンプルレベルのコントラスト蒸留機構を提案する。
我々は,学生ネットワークの感情決定境界を最適化するために,応答不整合蒸留方式を設計する。
論文 参考訳(メタデータ) (2024-04-25T09:35:09Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Ensemble Modeling for Multimodal Visual Action Recognition [50.38638300332429]
マルチモーダル動作認識のためのアンサンブルモデリング手法を提案する。
我々は,MECCANO[21]データセットの長期分布を処理するために,焦点損失の変種を用いて,個別のモダリティモデルを個別に訓練する。
論文 参考訳(メタデータ) (2023-08-10T08:43:20Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
我々は、欠落したモダリティ・イマジネーション・ネットワーク(IF-MMIN)に不変な特徴を用いることを提案する。
提案モデルは,不確実なモダリティ条件下で,すべてのベースラインを上回り,全体の感情認識性能を不変に向上することを示す。
論文 参考訳(メタデータ) (2022-10-27T12:16:25Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
このアルゴリズムは、異なるモードの適応的統合の原理における不確かさを効率的に推定し、信頼できる回帰結果を生成する。
実世界のデータと実世界のデータの両方に対する実験結果から,多モード回帰タスクにおける本手法の有効性と信頼性が示された。
論文 参考訳(メタデータ) (2021-11-11T14:28:12Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。