A Diffusion-Based Method for Learning the Multi-Outcome Distribution of Medical Treatments
- URL: http://arxiv.org/abs/2506.01533v1
- Date: Mon, 02 Jun 2025 10:49:55 GMT
- Title: A Diffusion-Based Method for Learning the Multi-Outcome Distribution of Medical Treatments
- Authors: Yuchen Ma, Jonas Schweisthal, Hengrui Zhang, Stefan Feuerriegel,
- Abstract summary: In medicine, treatments often influence multiple, interdependent outcomes.<n>Most machine learning methods for predicting treatment effects focus on single-outcome settings.<n>We propose a novel diffusion-based method called DIME to learn the joint distribution of multiple outcomes.
- Score: 25.154328229802985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In medicine, treatments often influence multiple, interdependent outcomes, such as primary endpoints, complications, adverse events, or other secondary endpoints. Hence, to make optimal treatment decisions, clinicians are interested in learning the distribution of multi-dimensional treatment outcomes. However, the vast majority of machine learning methods for predicting treatment effects focus on single-outcome settings, despite the fact that medical data often include multiple, interdependent outcomes. To address this limitation, we propose a novel diffusion-based method called DIME to learn the joint distribution of multiple outcomes of medical treatments. We addresses three challenges relevant in medical practice: (i)it is tailored to learn the joint interventional distribution of multiple medical outcomes, which enables reliable decision-making with uncertainty quantification rather than relying solely on point estimates; (ii)it explicitly captures the dependence structure between outcomes; (iii)it can handle outcomes of mixed type, including binary, categorical, and continuous variables. In DIME, we take into account the fundamental problem of causal inference through causal masking. For training, our method decomposes the joint distribution into a series of conditional distributions with a customized conditional masking to account for the dependence structure across outcomes. For inference, our method auto-regressively generates predictions. This allows our method to move beyond point estimates of causal quantities and thus learn the joint interventional distribution. To the best of our knowledge, DIME is the first neural method tailored to learn the joint, multi-outcome distribution of medical treatments. Across various experiments, we demonstrate that our method effectively learns the joint distribution and captures shared information among multiple outcomes.
Related papers
- DiffPO: A causal diffusion model for learning distributions of potential outcomes [22.262471034812492]
We propose a novel causal diffusion model called DiffPO.
It is carefully designed for reliable inferences in medicine by learning the distribution of potential outcomes.
Our method achieves state-of-the-art performance across a wide range of experiments.
arXiv Detail & Related papers (2024-10-11T15:50:17Z) - Individualized Multi-Treatment Response Curves Estimation using RBF-net with Shared Neurons [1.1119247609126184]
Our non-parametric modeling of the response curves relies on radial basis function (RBF)-nets with shared hidden neurons.
Applying our proposed method to MIMIC data, we obtain several interesting findings related to the impact of different treatment strategies on the length of ICU stay and 12-hour SOFA score for sepsis patients who are home-discharged.
arXiv Detail & Related papers (2024-01-29T21:13:01Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - The Blessings of Multiple Treatments and Outcomes in Treatment Effect
Estimation [53.81860494566915]
Existing studies leveraged proxy variables or multiple treatments to adjust for confounding bias.
In many real-world scenarios, there is greater interest in studying the effects on multiple outcomes.
We show that parallel studies of multiple outcomes involved in this setting can assist each other in causal identification.
arXiv Detail & Related papers (2023-09-29T14:33:48Z) - Reliable Off-Policy Learning for Dosage Combinations [27.385663284378854]
Decision-making in personalized medicine must often make choices for dosage combinations.
We propose a novel method for reliable off-policy learning for dosage combinations.
arXiv Detail & Related papers (2023-05-31T11:08:43Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
Federated learning (FL) has been widely employed for medical image analysis.
FL's performance is limited for multiple sclerosis (MS) lesion segmentation tasks.
We propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms.
arXiv Detail & Related papers (2022-05-03T14:06:03Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.