STORM: Benchmarking Visual Rating of MLLMs with a Comprehensive Ordinal Regression Dataset
- URL: http://arxiv.org/abs/2506.01738v1
- Date: Mon, 02 Jun 2025 14:48:15 GMT
- Title: STORM: Benchmarking Visual Rating of MLLMs with a Comprehensive Ordinal Regression Dataset
- Authors: Jinhong Wang, Shuo Tong, Jian liu, Dongqi Tang, Jintai Chen, Haochao Ying, Hongxia Xu, Danny Chen, Jian Wu,
- Abstract summary: STORM is a data collection and benchmark for Stimulating Trustworthy Ordinal Regression Ability of MLLMs for universal visual rating.<n>We propose a coarse-to-fine processing pipeline that dynamically considers label candidates and provides interpretable thoughts.<n>This benchmark aims to evaluate the all-in-one and zero-shot performance of MLLMs in scenarios requiring understanding of the essential common ordinal relationships of rating labels.
- Score: 13.574832958298911
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Visual rating is an essential capability of artificial intelligence (AI) for multi-dimensional quantification of visual content, primarily applied in ordinal regression (OR) tasks such as image quality assessment, facial age estimation, and medical image grading. However, current multi-modal large language models (MLLMs) under-perform in such visual rating ability while also suffering the lack of relevant datasets and benchmarks. In this work, we collect and present STORM, a data collection and benchmark for Stimulating Trustworthy Ordinal Regression Ability of MLLMs for universal visual rating. STORM encompasses 14 ordinal regression datasets across five common visual rating domains, comprising 655K image-level pairs and the corresponding carefully curated VQAs. Importantly, we also propose a coarse-to-fine processing pipeline that dynamically considers label candidates and provides interpretable thoughts, providing MLLMs with a general and trustworthy ordinal thinking paradigm. This benchmark aims to evaluate the all-in-one and zero-shot performance of MLLMs in scenarios requiring understanding of the essential common ordinal relationships of rating labels. Extensive experiments demonstrate the effectiveness of our framework and shed light on better fine-tuning strategies. The STORM dataset, benchmark, and pre-trained models are available on the following webpage to support further research in this area. Datasets and codes are released on the project page: https://storm-bench.github.io/.
Related papers
- Chart-HQA: A Benchmark for Hypothetical Question Answering in Charts [62.45232157149698]
We introduce a novel Chart Hypothetical Question Answering (HQA) task, which imposes assumptions on the same question to compel models to engage in counterfactual reasoning based on the chart content.<n> Furthermore, we introduce HAI, a human-AI interactive data synthesis approach that leverages the efficient text-editing capabilities of MLLMs alongside human expert knowledge to generate diverse and high-quality HQA data at a low cost.
arXiv Detail & Related papers (2025-03-06T05:08:40Z) - Human Cognitive Benchmarks Reveal Foundational Visual Gaps in MLLMs [65.93003087656754]
VisFactor is a benchmark that digitizes 20 vision-centric subtests from a well-established cognitive psychology assessment.<n>We evaluate 20 frontier Multimodal Large Language Models (MLLMs) from GPT, Gemini, Claude, LLaMA, Qwen, and SEED families.<n>The best-performing model achieves a score of only 25.19 out of 100, with consistent failures on tasks such as mental rotation, spatial relation inference, and figure-ground discrimination.
arXiv Detail & Related papers (2025-02-23T04:21:32Z) - PairBench: Are Vision-Language Models Reliable at Comparing What They See? [16.49586486795478]
We present PairBench, a framework to evaluate large vision language models (VLMs) for automatic evaluation depending on the task.<n>Our approach introduces four key metrics for reliable comparison: alignment with human annotations, consistency across pair ordering, distribution smoothness, and controllability through prompting.<n>Our analysis reveals that no model consistently excels across all metrics, with each demonstrating distinct strengths and weaknesses.
arXiv Detail & Related papers (2025-02-21T04:53:11Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia.<n>In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models.<n>This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods.
arXiv Detail & Related papers (2024-11-22T18:59:54Z) - AutoBench-V: Can Large Vision-Language Models Benchmark Themselves? [65.92331309449015]
We introduce AutoBench-V, an automated framework for serving evaluation on demand, i.e., benchmarking LVLMs based on specific aspects of model capability.<n>Through an extensive evaluation of nine popular LVLMs across five demanded user inputs, the framework shows effectiveness and reliability.
arXiv Detail & Related papers (2024-10-28T17:55:08Z) - Charting the Future: Using Chart Question-Answering for Scalable Evaluation of LLM-Driven Data Visualizations [7.32619928577074]
We propose a novel framework that leverages Visual Question Answering (VQA) models to automate the evaluation of LLM-generated data visualizations.
Our results indicate that LLM-generated charts do not match the accuracy of the original non-LLM-generated charts based on VQA performance measures.
arXiv Detail & Related papers (2024-09-27T14:02:48Z) - FineCops-Ref: A new Dataset and Task for Fine-Grained Compositional Referring Expression Comprehension [10.482908189805872]
Referring Expression (REC) is a crucial cross-modal task that objectively evaluates the capabilities of language understanding, image comprehension, and language-to-image grounding.<n>We have established a new REC dataset characterized by two key features.<n>It includes negative text and images created through fine-grained editing and generation based on existing data.
arXiv Detail & Related papers (2024-09-23T06:56:51Z) - Assessing Brittleness of Image-Text Retrieval Benchmarks from Vision-Language Models Perspective [44.045767657945895]
We examine the brittleness of the image-text retrieval (ITR) evaluation pipeline with a focus on concept granularity.
We evaluate four diverse state-of-the-art Vision-Language models on both the standard and fine-grained datasets under zero-shot conditions.
The results demonstrate that although perturbations generally degrade model performance, the fine-grained datasets exhibit a smaller performance drop than their standard counterparts.
arXiv Detail & Related papers (2024-07-21T18:08:44Z) - MM-SpuBench: Towards Better Understanding of Spurious Biases in Multimodal LLMs [38.93090238335506]
Spurious bias, a tendency to use spurious correlations between non-essential input attributes and target variables for predictions, has revealed a severe pitfall in deep learning models trained on single modality data.
We introduce MM-SpuBench, a comprehensive visual question-answering (VQA) benchmark designed to evaluate MLLMs' reliance on nine distinct categories of spurious correlations.
Our findings illuminate the persistence of the reliance on spurious correlations from these models and underscore the urge for new methodologies to mitigate spurious biases.
arXiv Detail & Related papers (2024-06-24T20:29:16Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - Q-Bench+: A Benchmark for Multi-modal Foundation Models on Low-level Vision from Single Images to Pairs [71.07108539262721]
We design benchmark settings to emulate human language responses related to low-level vision.
We extend the low-level perception-related question-answering and description evaluations of MLLMs from single images to image pairs.
We demonstrate that several MLLMs have decent low-level visual competencies on single images, but only GPT-4V exhibits higher accuracy on pairwise comparisons than humans.
arXiv Detail & Related papers (2024-02-11T06:44:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.