Inverse Microparticle Design for Enhanced Optical Trapping and Detection Efficiency in All Six Degrees of Freedom
- URL: http://arxiv.org/abs/2506.01837v3
- Date: Mon, 14 Jul 2025 07:06:27 GMT
- Title: Inverse Microparticle Design for Enhanced Optical Trapping and Detection Efficiency in All Six Degrees of Freedom
- Authors: Moosung Lee, Benjamin A. Stickler, Thomas Pertsch, Sungkun Hong,
- Abstract summary: We present a computational framework that combines an efficient electromagnetic scattering solver with the adjoint method to inversely design printable microparticles tailored for levitated optomechanics.<n>This improves the feasibility of quantum-limited motional control of all translational and rotational degrees of freedom in a standard standing-wave optical trap.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving quantum-limited motional control of optically trapped particles beyond the sub-micrometer scale is an outstanding problem in levitated optomechanics. A key obstacle is solving the light scattering problem and identifying particle geometries that allow stable trapping and efficient motional detection of their center of mass and rotational motion in three dimensions. Here, we present a computational framework that combines an efficient electromagnetic scattering solver with the adjoint method to inversely design printable microparticles tailored for levitated optomechanics. Our method allows identifying optimized geometries, characterized by enhanced optical trapping and detection efficiencies compared to conventional microspheres. This improves the feasibility of quantum-limited motional control of all translational and rotational degrees of freedom in a standard standing-wave optical trap.
Related papers
- Spin Correlations in Recirculating Multipass Alkali Cells for Advancing Quantum Magnetometry [4.60923435639633]
Multipass cells are critical components in a variety of quantum technologies.<n>In optical magnetometry, increasing the optical depth through multipass geometries enhances sensitivity.<n>We present a novel recirculating multipass alkali cell that improves the active-to-cell volume ratio and minimizes beam spot overlap.
arXiv Detail & Related papers (2025-06-17T03:49:31Z) - Ultrasensitive Transverse Deflection Measurement with Two-photon Interference [8.406719933893529]
Hong-Ou-Mandel (HOM) interference is intrinsic quantum phenomena that goes beyond the possibilities of classical physics.<n>We present an experimental demonstration of a spatial HOM interferometry for measuring the transverse deflection of an optical beam.
arXiv Detail & Related papers (2025-04-06T07:52:43Z) - Experimental Observation of Earth's Rotation with Quantum Entanglement [0.0]
We present a table-top experiment using maximally path-entangled quantum states of light in an interferometer with an area of 715 m$2$.
The achieved sensitivity of 5 $mu$rad/s constitutes the highest rotation resolution ever achieved with optical quantum interferometers.
arXiv Detail & Related papers (2023-10-25T18:01:23Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Tunable directional photon scattering from a pair of superconducting
qubits [105.54048699217668]
In the optical and microwave frequency ranges tunable directionality can be achieved by applying external magnetic fields.
We demonstrate tunable directional scattering with just two transmon qubits coupled to a transmission line.
arXiv Detail & Related papers (2022-05-06T15:21:44Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Dissipative Quantum Feedback in Measurements Using a Parametrically
Coupled Microcavity [0.0]
Micro- and nanoscale optical or microwave cavities are used in a wide range of classical applications and quantum science experiments.
Dissipative photon absorption can result in quantum feedback via in-loop field detection of the absorbed optical field.
We experimentally observe such unanticipated dissipative dynamics in optomechanical spectroscopy of sideband-cooled optomechanical crystal cavities.
arXiv Detail & Related papers (2021-09-29T15:12:45Z) - Cavity-enhanced polarization rotation measurements for low-disturbance
probing of atoms [0.0]
cavity-enhanced polarization-rotation measurement is a means to detect magnetic effects in transparent media.
We compute the effective polarization rotation effect in a Fabry-Perot cavity containing a magnetic medium, including losses due to enclosure windows or other sources.
arXiv Detail & Related papers (2021-07-28T11:47:46Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Quantum control of a nanoparticle optically levitated in cryogenic free
space [0.0]
Tests of quantum mechanics on a macroscopic scale require extreme control over mechanical motion and its decoherence.
In this work, we optically levitate a femto-gram dielectric particle in cryogenic free space.
We cool its center-of-mass motion by measurement-based feedback to an average occupancy of 0.65 motional quanta, corresponding to a state purity of 43%.
arXiv Detail & Related papers (2021-03-05T18:12:50Z) - Inverse-designed photon extractors for optically addressable defect
qubits [48.7576911714538]
Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
arXiv Detail & Related papers (2020-07-24T04:30:14Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.