Probing Quantum Spin Systems with Kolmogorov-Arnold Neural Network Quantum States
- URL: http://arxiv.org/abs/2506.01891v4
- Date: Fri, 27 Jun 2025 21:50:31 GMT
- Title: Probing Quantum Spin Systems with Kolmogorov-Arnold Neural Network Quantum States
- Authors: Mahmud Ashraf Shamim, Eric A F Reinhardt, Talal Ahmed Chowdhury, Sergei Gleyzer, Paulo T Araujo,
- Abstract summary: We propose textttSineKAN, a neural network model to represent quantum mechanical wave functions.<n>We find that textttSineKAN models can be trained to high precisions and accuracies with minimal computational costs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Quantum States (NQS) are a class of variational wave functions parametrized by neural networks (NNs) to study quantum many-body systems. In this work, we propose \texttt{SineKAN}, a NQS \textit{ansatz} based on Kolmogorov-Arnold Networks (KANs), to represent quantum mechanical wave functions as nested univariate functions. We show that \texttt{SineKAN} wavefunction with learnable sinusoidal activation functions can capture the ground state energies, fidelities and various correlation functions of the one dimensional Transverse-Field Ising model, Anisotropic Heisenberg model, and Antiferromagnetic $J_{1}-J_{2}$ model with different chain lengths. In our study of the $J_1-J_2$ model with $L=100$ sites, we find that the \texttt{SineKAN} model outperforms several previously explored neural quantum state \textit{ans\"atze}, including Restricted Boltzmann Machines (RBMs), Long Short-Term Memory models (LSTMs), and Multi-layer Perceptrons (MLP) \textit{a.k.a.} Feed Forward Neural Networks, when compared to the results obtained from the Density Matrix Renormalization Group (DMRG) algorithm. We find that \texttt{SineKAN} models can be trained to high precisions and accuracies with minimal computational costs.
Related papers
- Solving the Hubbard model with Neural Quantum States [66.55653324211542]
We study the state-of-the-art results for the doped two-dimensional (2D) Hubbard model.<n>We find different attention heads in the NQS ansatz can directly encode correlations at different scales.<n>Our work establishes NQS as a powerful tool for solving challenging many-fermions systems.
arXiv Detail & Related papers (2025-07-03T14:08:25Z) - Non-stabilizerness of Neural Quantum States [41.94295877935867]
We introduce a methodology to estimate non-stabilizerness or "magic", a key resource for quantum complexity, with Neural Quantum States (NQS)<n>We study the magic content in an ensemble of random NQS, demonstrating that neural network parametrizations of the wave function capture finite non-stabilizerness besides large entanglement.
arXiv Detail & Related papers (2025-02-13T19:14:15Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Deep Neural Networks as Variational Solutions for Correlated Open
Quantum Systems [0.0]
We show that parametrizing the density matrix directly with more powerful models can yield better variational ansatz functions.
We present results for the dissipative one-dimensional transverse-field Ising model and a two-dimensional dissipative Heisenberg model.
arXiv Detail & Related papers (2024-01-25T13:41:34Z) - Neural network approach to quasiparticle dispersions in doped
antiferromagnets [0.0]
We study the ability of neural quantum states to represent the bosonic and fermionic $t-J$ model on different 1D and 2D lattices.
We present a method to calculate dispersion relations from the neural network state representation.
arXiv Detail & Related papers (2023-10-12T17:59:33Z) - Message-Passing Neural Quantum States for the Homogeneous Electron Gas [41.94295877935867]
We introduce a message-passing-neural-network-based wave function Ansatz to simulate extended, strongly interacting fermions in continuous space.
We demonstrate its accuracy by simulating the ground state of the homogeneous electron gas in three spatial dimensions.
arXiv Detail & Related papers (2023-05-12T04:12:04Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Infinite Neural Network Quantum States: Entanglement and Training
Dynamics [1.0878040851638]
We study infinite limits of neural network quantum states ($infty$-NNQS), which exhibit representation power through ensemble statistics.
A general framework is developed for studying the gradient descent dynamics of neural network quantum states.
$infty$-NNQS opens up new opportunities for studying entanglement and training dynamics in other physics applications.
arXiv Detail & Related papers (2021-12-01T18:57:17Z) - Gauge Invariant and Anyonic Symmetric Transformer and RNN Quantum States for Quantum Lattice Models [16.987004075528606]
We develop a general approach to constructing gauge invariant or anyonic symmetric autoregressive neural network quantum states.
We prove that our methods can provide exact representation for the ground and excited states of the 2D and 3D toric codes.
We variationally optimize our symmetry incorporated autoregressive neural networks for ground states as well as real-time dynamics for a variety of models.
arXiv Detail & Related papers (2021-01-18T18:55:21Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.