SMOTE-DP: Improving Privacy-Utility Tradeoff with Synthetic Data
- URL: http://arxiv.org/abs/2506.01907v1
- Date: Mon, 02 Jun 2025 17:27:10 GMT
- Title: SMOTE-DP: Improving Privacy-Utility Tradeoff with Synthetic Data
- Authors: Yan Zhou, Bradley Malin, Murat Kantarcioglu,
- Abstract summary: We show that, with the right mechanism of synthetic data generation, we can achieve strong privacy protection without significant utility loss.<n>We prove in theory and through empirical demonstration that this SMOTE-DP technique can produce synthetic data that not only ensures robust privacy protection but maintains utility in downstream learning tasks.
- Score: 13.699107354397286
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Privacy-preserving data publication, including synthetic data sharing, often experiences trade-offs between privacy and utility. Synthetic data is generally more effective than data anonymization in balancing this trade-off, however, not without its own challenges. Synthetic data produced by generative models trained on source data may inadvertently reveal information about outliers. Techniques specifically designed for preserving privacy, such as introducing noise to satisfy differential privacy, often incur unpredictable and significant losses in utility. In this work we show that, with the right mechanism of synthetic data generation, we can achieve strong privacy protection without significant utility loss. Synthetic data generators producing contracting data patterns, such as Synthetic Minority Over-sampling Technique (SMOTE), can enhance a differentially private data generator, leveraging the strengths of both. We prove in theory and through empirical demonstration that this SMOTE-DP technique can produce synthetic data that not only ensures robust privacy protection but maintains utility in downstream learning tasks.
Related papers
- Improving Noise Efficiency in Privacy-preserving Dataset Distillation [59.57846442477106]
We introduce a novel framework that decouples sampling from optimization for better convergence and improves signal quality.<n>On CIFAR-10, our method achieves a textbf10.0% improvement with 50 images per class and textbf8.3% increase with just textbfone-fifth the distilled set size of previous state-of-the-art methods.
arXiv Detail & Related papers (2025-08-03T13:15:52Z) - Synthetic Data Privacy Metrics [2.1213500139850017]
We review the pros and cons of popular metrics that include simulations of adversarial attacks.<n>We also review current best practices for amending generative models to enhance the privacy of the data they create.
arXiv Detail & Related papers (2025-01-07T17:02:33Z) - Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented generation (RAG) enhances the outputs of language models by integrating relevant information retrieved from external knowledge sources.<n>RAG systems may face severe privacy risks when retrieving private data.<n>We propose using synthetic data as a privacy-preserving alternative for the retrieval data.
arXiv Detail & Related papers (2024-06-20T22:53:09Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - The Use of Synthetic Data to Train AI Models: Opportunities and Risks
for Sustainable Development [0.6906005491572401]
This paper investigates the policies governing the creation, utilization, and dissemination of synthetic data.
A well crafted synthetic data policy must strike a balance between privacy concerns and the utility of data.
arXiv Detail & Related papers (2023-08-31T23:18:53Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - Synthetic Data: Methods, Use Cases, and Risks [11.413309528464632]
A possible alternative gaining momentum in both the research community and industry is to share synthetic data instead.
We provide a gentle introduction to synthetic data and discuss its use cases, the privacy challenges that are still unaddressed, and its inherent limitations as an effective privacy-enhancing technology.
arXiv Detail & Related papers (2023-03-01T16:35:33Z) - Synthetic Text Generation with Differential Privacy: A Simple and
Practical Recipe [32.63295550058343]
We show that a simple and practical recipe in the text domain is effective in generating useful synthetic text with strong privacy protection.
Our method produces synthetic text that is competitive in terms of utility with its non-private counterpart.
arXiv Detail & Related papers (2022-10-25T21:21:17Z) - Synthetic Data -- Anonymisation Groundhog Day [4.694549066382216]
We present the first quantitative evaluation of the privacy gain of synthetic data publishing.
We show that synthetic data does not prevent inference attacks or does not retain data utility.
In contrast to traditional anonymisation, the privacy-utility tradeoff of synthetic data publishing is hard to predict.
arXiv Detail & Related papers (2020-11-13T16:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.