論文の概要: Generalized Gradient Norm Clipping & Non-Euclidean $(L_0,L_1)$-Smoothness
- arxiv url: http://arxiv.org/abs/2506.01913v1
- Date: Mon, 02 Jun 2025 17:34:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:34.669636
- Title: Generalized Gradient Norm Clipping & Non-Euclidean $(L_0,L_1)$-Smoothness
- Title(参考訳): 一般化グラディエントノルムクリッピングと非ユークリッド$(L_0,L_1)$-滑らかさ
- Authors: Thomas Pethick, Wanyun Xie, Mete Erdogan, Kimon Antonakopoulos, Tony Silveti-Falls, Volkan Cevher,
- Abstract要約: 本研究は、急勾配と条件勾配のアプローチを組み合わせることでノルムクリッピングを一般化するハイブリッド非ユークリッド最適化手法を提案する。
本稿では、ディープラーニングのためのアルゴリズムのインスタンス化について論じ、画像分類と言語モデリングにおけるそれらの特性を実証する。
- 参考スコア(独自算出の注目度): 51.302674884611335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces a hybrid non-Euclidean optimization method which generalizes gradient norm clipping by combining steepest descent and conditional gradient approaches. The method achieves the best of both worlds by establishing a descent property under a generalized notion of ($L_0$,$L_1$)-smoothness. Weight decay is incorporated in a principled manner by identifying a connection to the Frank-Wolfe short step. In the stochastic case, we show an order optimal $O(n^{-1/4})$ convergence rate by leveraging a momentum based gradient estimator. We discuss how to instantiate the algorithms for deep learning and demonstrate their properties on image classification and language modeling.
- Abstract(参考訳): 本研究は,急勾配法と条件勾配法を組み合わせることで勾配ノルムクリッピングを一般化するハイブリッド非ユークリッド最適化手法を提案する。
この方法は、(L_0$,$L_1$)-smoothnessという一般化された概念の下で降下特性を確立することにより、両方の世界のベストを達成する。
ウェイト崩壊は、フランク=ウルフの短ステップへの接続を特定することによって、原則的に組み込まれている。
確率的場合、運動量に基づく勾配推定器を利用して最適$O(n^{-1/4})$収束率を示す。
本稿では、ディープラーニングのためのアルゴリズムのインスタンス化について論じ、画像分類と言語モデリングにおけるそれらの特性を実証する。
関連論文リスト
- Gradient Methods with Online Scaling [19.218484733179356]
オンライン学習による勾配に基づく手法の収束を加速する枠組みを提案する。
広範に使用される過勾配降下は勾配降下の収束により改善されることを示す。
論文 参考訳(メタデータ) (2024-11-04T05:04:18Z) - Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity [50.25258834153574]
我々は、(強に)凸 $(L0)$-smooth 関数のクラスに焦点を当て、いくつかの既存のメソッドに対する新しい収束保証を導出する。
特に,スムーズなグラディエント・クリッピングを有するグラディエント・ディフレッシュと,ポリアク・ステップサイズを有するグラディエント・ディフレッシュのコンバージェンス・レートの改善を導出した。
論文 参考訳(メタデータ) (2024-09-23T13:11:37Z) - Convergence of First-Order Methods for Constrained Nonconvex
Optimization with Dependent Data [7.513100214864646]
収束$tildeO(t-1/4)$とMoreautildeO(vareps-4)$がスムーズな非最適化のために最悪の場合の複雑性を示す。
適応的なステップサイズと最適収束度を持つ投影勾配法に基づく従属データに対する最初のオンライン非負行列分解アルゴリズムを得る。
論文 参考訳(メタデータ) (2022-03-29T17:59:10Z) - Leveraging Non-uniformity in First-order Non-convex Optimization [93.6817946818977]
目的関数の非一様洗練は、emphNon-uniform Smoothness(NS)とemphNon-uniform Lojasiewicz inequality(NL)につながる
新しい定義は、古典的な$Omega (1/t2)$下界よりも早く大域的最適性に収束する新しい幾何学的一階法を刺激する。
論文 参考訳(メタデータ) (2021-05-13T04:23:07Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。