E3D-Bench: A Benchmark for End-to-End 3D Geometric Foundation Models
- URL: http://arxiv.org/abs/2506.01933v1
- Date: Mon, 02 Jun 2025 17:53:09 GMT
- Title: E3D-Bench: A Benchmark for End-to-End 3D Geometric Foundation Models
- Authors: Wenyan Cong, Yiqing Liang, Yancheng Zhang, Ziyi Yang, Yan Wang, Boris Ivanovic, Marco Pavone, Chen Chen, Zhangyang Wang, Zhiwen Fan,
- Abstract summary: We present the first comprehensive benchmark for 3D geometric foundation models (GFMs)<n>GFMs directly predict dense 3D representations in a single feed-forward pass, eliminating the need for slow or unavailable precomputed camera parameters.<n>We evaluate 16 state-of-the-art GFMs, revealing their strengths and limitations across tasks and domains.<n>All code, evaluation scripts, and processed data will be publicly released to accelerate research in 3D spatial intelligence.
- Score: 78.1674905950243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial intelligence, encompassing 3D reconstruction, perception, and reasoning, is fundamental to applications such as robotics, aerial imaging, and extended reality. A key enabler is the real-time, accurate estimation of core 3D attributes (camera parameters, point clouds, depth maps, and 3D point tracks) from unstructured or streaming imagery. Inspired by the success of large foundation models in language and 2D vision, a new class of end-to-end 3D geometric foundation models (GFMs) has emerged, directly predicting dense 3D representations in a single feed-forward pass, eliminating the need for slow or unavailable precomputed camera parameters. Since late 2023, the field has exploded with diverse variants, but systematic evaluation is lacking. In this work, we present the first comprehensive benchmark for 3D GFMs, covering five core tasks: sparse-view depth estimation, video depth estimation, 3D reconstruction, multi-view pose estimation, novel view synthesis, and spanning both standard and challenging out-of-distribution datasets. Our standardized toolkit automates dataset handling, evaluation protocols, and metric computation to ensure fair, reproducible comparisons. We evaluate 16 state-of-the-art GFMs, revealing their strengths and limitations across tasks and domains, and derive key insights to guide future model scaling and optimization. All code, evaluation scripts, and processed data will be publicly released to accelerate research in 3D spatial intelligence.
Related papers
- Lift3D Foundation Policy: Lifting 2D Large-Scale Pretrained Models for Robust 3D Robotic Manipulation [30.744137117668643]
Lift3D is a framework that enhances 2D foundation models with implicit and explicit 3D robotic representations to construct a robust 3D manipulation policy.<n>In experiments, Lift3D consistently outperforms previous state-of-the-art methods across several simulation benchmarks and real-world scenarios.
arXiv Detail & Related papers (2024-11-27T18:59:52Z) - LLMI3D: MLLM-based 3D Perception from a Single 2D Image [77.13869413871028]
multimodal large language models (MLLMs) excel in general capacity but underperform in 3D tasks.<n>In this paper, we propose solutions for weak 3D local spatial object perception, poor text-based geometric numerical output, and inability to handle camera focal variations.<n>We employ parameter-efficient fine-tuning for a pre-trained MLLM and develop LLMI3D, a powerful 3D perception MLLM.
arXiv Detail & Related papers (2024-08-14T10:00:16Z) - Unsupervised Learning of Category-Level 3D Pose from Object-Centric Videos [15.532504015622159]
Category-level 3D pose estimation is a fundamentally important problem in computer vision and robotics.
We tackle the problem of learning to estimate the category-level 3D pose only from casually taken object-centric videos.
arXiv Detail & Related papers (2024-07-05T09:43:05Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal Pre-training Paradigm [111.16358607889609]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.<n>For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - From 2D to 3D: Re-thinking Benchmarking of Monocular Depth Prediction [80.67873933010783]
We argue that MDP is currently witnessing benchmark over-fitting and relying on metrics that are only partially helpful to gauge the usefulness of the predictions for 3D applications.
This limits the design and development of novel methods that are truly aware of - and improving towards estimating - the 3D structure of the scene rather than optimizing 2D-based distances.
We propose a set of metrics well suited to evaluate the 3D geometry of MDP approaches and a novel indoor benchmark, RIO-D3D, crucial for the proposed evaluation methodology.
arXiv Detail & Related papers (2022-03-15T17:50:54Z) - Learning Temporal 3D Human Pose Estimation with Pseudo-Labels [3.0954251281114513]
We present a simple, yet effective, approach for self-supervised 3D human pose estimation.
We rely on triangulating 2D body pose estimates of a multiple-view camera system.
Our method achieves state-of-the-art performance in the Human3.6M and MPI-INF-3DHP benchmarks.
arXiv Detail & Related papers (2021-10-14T17:40:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.