論文の概要: Music Interpretation and Emotion Perception: A Computational and Neurophysiological Investigation
- arxiv url: http://arxiv.org/abs/2506.01982v2
- Date: Wed, 04 Jun 2025 06:16:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 16:24:49.042864
- Title: Music Interpretation and Emotion Perception: A Computational and Neurophysiological Investigation
- Title(参考訳): 音楽解釈と感情知覚 : 計算・神経生理学的研究
- Authors: Vassilis Lyberatos, Spyridon Kantarelis, Ioanna Zioga, Christina Anagnostopoulou, Giorgos Stamou, Anastasia Georgaki,
- Abstract要約: 本研究では,音楽演奏における感情表現と知覚について,計算的・神経生理学的手法を用いて検討した。
演奏者の情緒的コミュニケーションやリスナーの反応に及ぼすレパートリー,ダイアトニック・モーダル・オード,即興性,表現性のレベルなどの異なる演奏設定の影響について検討した。
- 参考スコア(独自算出の注目度): 1.2000613456354128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates emotional expression and perception in music performance using computational and neurophysiological methods. The influence of different performance settings, such as repertoire, diatonic modal etudes, and improvisation, as well as levels of expressiveness, on performers' emotional communication and listeners' reactions is explored. Professional musicians performed various tasks, and emotional annotations were provided by both performers and the audience. Audio analysis revealed that expressive and improvisational performances exhibited unique acoustic features, while emotion analysis showed stronger emotional responses. Neurophysiological measurements indicated greater relaxation in improvisational performances. This multimodal study highlights the significance of expressivity in enhancing emotional communication and audience engagement.
- Abstract(参考訳): 本研究では,音楽演奏における感情表現と知覚について,計算的・神経生理学的手法を用いて検討した。
演奏者の情緒的コミュニケーションやリスナーの反応に及ぼすレパートリー,ダイアトニック・モーダル・オード,即興性,表現性のレベルなどの異なる演奏設定の影響について検討した。
プロのミュージシャンが様々な仕事をし、パフォーマーと観客の両方から感情的な注釈が提供された。
音声分析の結果,表現的・即興的な演奏は独特な音響特性を示し,感情分析は強い感情反応を示した。
神経生理学的測定の結果,即興演奏ではリラックス度が高かった。
このマルチモーダルな研究は、感情コミュニケーションとオーディエンスエンゲージメントを高めることにおける表現力の重要性を強調している。
関連論文リスト
- Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation [63.94836524433559]
DICE-Talkは、感情と同一性を切り離し、類似した特徴を持つ感情を協調するフレームワークである。
我々は、モーダル・アテンションを通して、音声と視覚の感情の手がかりを共同でモデル化するアンタングル型感情埋め込み装置を開発した。
次に,学習可能な感情バンクを用いた相関強化感情調和モジュールを提案する。
第3に、拡散過程における感情の一貫性を強制する感情識別目標を設計する。
論文 参考訳(メタデータ) (2025-04-25T05:28:21Z) - Modelling Emotions in Face-to-Face Setting: The Interplay of Eye-Tracking, Personality, and Temporal Dynamics [1.4645774851707578]
本研究では、視線追跡データ、時間的ダイナミクス、性格特性を統合することで、知覚と知覚の両方の感情の検出を大幅に向上させる方法について述べる。
本研究は,将来の情緒コンピューティングと人間エージェントシステムの設計を示唆するものである。
論文 参考訳(メタデータ) (2025-03-18T13:15:32Z) - Exploring and Applying Audio-Based Sentiment Analysis in Music [0.0]
音楽的感情を解釈する計算モデルの能力は、ほとんど解明されていない。
本研究は,(1)音楽クリップの感情を時間とともに予測し,(2)時系列の次の感情値を決定し,シームレスな遷移を保証することを目的とする。
論文 参考訳(メタデータ) (2024-02-22T22:34:06Z) - Exploring the Emotional Landscape of Music: An Analysis of Valence
Trends and Genre Variations in Spotify Music Data [0.0]
本稿ではSpotifyの音楽データを用いた音楽感情と傾向の複雑な分析を行う。
回帰モデル、時間分析、気分遷移、ジャンル調査を応用し、音楽と感情の関係のパターンを明らかにする。
論文 参考訳(メタデータ) (2023-10-29T15:57:31Z) - Towards personalised music-therapy; a neurocomputational modelling
perspective [7.642617497821302]
音楽療法は、副作用のない幅広い神経疾患や気分障害において、患者の結果を改善するための介入として成功している。
脳のネットワークは、トップダウンとボトムアップの両方のプロセスで説明できる方法で音楽に訓練されている。
論文 参考訳(メタデータ) (2023-05-15T19:42:04Z) - Affective Idiosyncratic Responses to Music [63.969810774018775]
本研究では,中国社会音楽プラットフォーム上での403万以上のリスナーコメントから,音楽に対する感情応答を測定する手法を開発した。
我々は,聴取者の感情反応を促進する音楽的,歌詞的,文脈的,人口動態的,精神的健康的効果をテストした。
論文 参考訳(メタデータ) (2022-10-17T19:57:46Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
異なる感情の音声サンプル間の相対的な差を測定する新しい定式化を提案する。
次に、私たちの定式化を、シーケンスからシーケンスまでの感情的なテキストから音声へのフレームワークに組み込む。
実行時に、感情属性ベクトルを手動で定義し、所望の感情混合を生成するためにモデルを制御する。
論文 参考訳(メタデータ) (2022-08-11T15:45:58Z) - Emotion Intensity and its Control for Emotional Voice Conversion [77.05097999561298]
感情音声変換(EVC)は、言語内容と話者のアイデンティティを保ちながら、発話の感情状態を変換しようとする。
本稿では,感情の強さを明示的に表現し,制御することを目的とする。
本稿では,話者スタイルを言語内容から切り離し,連続した空間に埋め込み,感情埋め込みのプロトタイプを形成するスタイルに符号化することを提案する。
論文 参考訳(メタデータ) (2022-01-10T02:11:25Z) - E-ffective: A Visual Analytic System for Exploring the Emotion and
Effectiveness of Inspirational Speeches [57.279044079196105]
E-ffective(エフェクティブ)は、音声の専門家や初心者が、音声要因の役割と効果的な音声への貢献の両方を分析することのできる視覚分析システムである。
E-spiral(音声の感情の変化を視覚的にコンパクトに表現する)とE-script(音声コンテンツを主要な音声配信情報に結びつける)の2つの新しい可視化技術がある。
論文 参考訳(メタデータ) (2021-10-28T06:14:27Z) - Stimuli-Aware Visual Emotion Analysis [75.68305830514007]
本稿では,刺激選択,特徴抽出,感情予測の3段階からなる刺激認識型視覚感情分析(VEA)手法を提案する。
我々の知る限りでは、エンド・ツー・エンドのネットワークでVEAに刺激選択プロセスを導入するのは初めてです。
実験により、提案手法は、4つの公的な視覚的感情データセットに対する最先端のアプローチよりも一貫して優れていることが示された。
論文 参考訳(メタデータ) (2021-09-04T08:14:52Z) - Musical Prosody-Driven Emotion Classification: Interpreting Vocalists
Portrayal of Emotions Through Machine Learning [0.0]
音楽の韻律の役割は、いくつかの研究が韻律と感情の強い結びつきを示しているにもかかわらず、まだ解明されていない。
本研究では,従来の機械学習アルゴリズムの入力を音楽韻律の特徴に限定する。
我々は,ボーカリストの個人データ収集手法と,アーティスト自身による個人的根拠的真理ラベル付け手法を利用する。
論文 参考訳(メタデータ) (2021-06-04T15:40:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。