Surrogate Interpretable Graph for Random Decision Forests
- URL: http://arxiv.org/abs/2506.01988v1
- Date: Sat, 17 May 2025 09:44:37 GMT
- Title: Surrogate Interpretable Graph for Random Decision Forests
- Authors: Akshat Dubey, Aleksandar Anžel, Georges Hattab,
- Abstract summary: The field of health informatics has been profoundly influenced by the development of random forest models.<n>The increasing number of features and estimators in random forests can prevent domain experts from accurately interpreting global feature interactions.<n>The implementation of a surrogate interpretable graph enhances global interpretability, which is critical for such a high-stakes domain.
- Score: 45.46706627196389
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The field of health informatics has been profoundly influenced by the development of random forest models, which have led to significant advances in the interpretability of feature interactions. These models are characterized by their robustness to overfitting and parallelization, making them particularly useful in this domain. However, the increasing number of features and estimators in random forests can prevent domain experts from accurately interpreting global feature interactions, thereby compromising trust and regulatory compliance. A method called the surrogate interpretability graph has been developed to address this issue. It uses graphs and mixed-integer linear programming to analyze and visualize feature interactions. This improves their interpretability by visualizing the feature usage per decision-feature-interaction table and the most dominant hierarchical decision feature interactions for predictions. The implementation of a surrogate interpretable graph enhances global interpretability, which is critical for such a high-stakes domain.
Related papers
- Feature Importance in Pedestrian Intention Prediction: A Context-Aware Review [9.475536008455133]
Recent advancements in predicting pedestrian crossing intentions for Autonomous Vehicles using Computer Vision and Deep Neural Networks are promising.
We introduce Context-aware Permutation Feature Importance (CAPFI), a novel approach tailored for pedestrian intention prediction.
CAPFI enables more interpretability and reliable assessments of feature importance by leveraging subdivided scenario contexts.
arXiv Detail & Related papers (2024-09-11T22:13:01Z) - Feature graphs for interpretable unsupervised tree ensembles: centrality, interaction, and application in disease subtyping [0.24578723416255746]
Feature selection assumes a pivotal role in enhancing model interpretability.
The accuracy gained from aggregating decision trees comes at the expense of interpretability.
The study introduces novel methods to construct feature graphs from unsupervised random forests.
arXiv Detail & Related papers (2024-04-27T12:47:37Z) - Intrinsic User-Centric Interpretability through Global Mixture of Experts [31.738009841932374]
InterpretCC is a family of intrinsically interpretable neural networks that optimize for ease of human understanding and explanation faithfulness.<n>We show that InterpretCC explanations are found to have higher actionability and usefulness over other intrinsically interpretable approaches.
arXiv Detail & Related papers (2024-02-05T11:55:50Z) - Improving Neural Additive Models with Bayesian Principles [54.29602161803093]
Neural additive models (NAMs) enhance the transparency of deep neural networks by handling calibrated input features in separate additive sub-networks.
We develop Laplace-approximated NAMs (LA-NAMs) which show improved empirical performance on datasets and challenging real-world medical tasks.
arXiv Detail & Related papers (2023-05-26T13:19:15Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
Graph Neural Networks (GNNs) are proposed without considering the distribution shifts between training and testing graphs.
In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation.
We propose a general causal representation framework, called StableGNN, to eliminate the impact of spurious correlations.
arXiv Detail & Related papers (2021-11-20T18:57:18Z) - Interpreting and improving deep-learning models with reality checks [13.287382944078562]
This chapter covers recent work aiming to interpret models by attributing importance to features and feature groups for a single prediction.
We show how these attributions can be used to directly improve the generalization of a neural network or to distill it into a simple model.
arXiv Detail & Related papers (2021-08-16T00:58:15Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
Inference [48.63194907060615]
We build off of semi-implicit graph variational auto-encoders to capture higher-order statistics in a low-dimensional graph latent representation.
We incorporate hyperbolic geometry in the latent space through a Poincare embedding to efficiently represent graphs exhibiting hierarchical structure.
arXiv Detail & Related papers (2020-10-31T05:48:34Z) - How does this interaction affect me? Interpretable attribution for
feature interactions [19.979889568380464]
We propose an interaction attribution and detection framework called Archipelago.
Our experiments on standard annotation labels indicate our approach provides significantly more interpretable explanations than comparable methods.
We also provide accompanying visualizations of our approach that give new insights into deep neural networks.
arXiv Detail & Related papers (2020-06-19T05:14:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.