Feature graphs for interpretable unsupervised tree ensembles: centrality, interaction, and application in disease subtyping
- URL: http://arxiv.org/abs/2404.17886v1
- Date: Sat, 27 Apr 2024 12:47:37 GMT
- Title: Feature graphs for interpretable unsupervised tree ensembles: centrality, interaction, and application in disease subtyping
- Authors: Christel Sirocchi, Martin Urschler, Bastian Pfeifer,
- Abstract summary: Feature selection assumes a pivotal role in enhancing model interpretability.
The accuracy gained from aggregating decision trees comes at the expense of interpretability.
The study introduces novel methods to construct feature graphs from unsupervised random forests.
- Score: 0.24578723416255746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretable machine learning has emerged as central in leveraging artificial intelligence within high-stakes domains such as healthcare, where understanding the rationale behind model predictions is as critical as achieving high predictive accuracy. In this context, feature selection assumes a pivotal role in enhancing model interpretability by identifying the most important input features in black-box models. While random forests are frequently used in biomedicine for their remarkable performance on tabular datasets, the accuracy gained from aggregating decision trees comes at the expense of interpretability. Consequently, feature selection for enhancing interpretability in random forests has been extensively explored in supervised settings. However, its investigation in the unsupervised regime remains notably limited. To address this gap, the study introduces novel methods to construct feature graphs from unsupervised random forests and feature selection strategies to derive effective feature combinations from these graphs. Feature graphs are constructed for the entire dataset as well as individual clusters leveraging the parent-child node splits within the trees, such that feature centrality captures their relevance to the clustering task, while edge weights reflect the discriminating power of feature pairs. Graph-based feature selection methods are extensively evaluated on synthetic and benchmark datasets both in terms of their ability to reduce dimensionality while improving clustering performance, as well as to enhance model interpretability. An application on omics data for disease subtyping identifies the top features for each cluster, showcasing the potential of the proposed approach to enhance interpretability in clustering analyses and its utility in a real-world biomedical application.
Related papers
- Enhancing Missing Data Imputation through Combined Bipartite Graph and Complete Directed Graph [18.06658040186476]
We introduce a novel framework named the Bipartite and Complete Directed Graph Neural Network (BCGNN)
Within BCGNN, observations and features are differentiated as two distinct node types, and the values of observed features are converted into attributed edges linking them.
In parallel, the complete directed graph segment adeptly outlines and communicates the complex interdependencies among features.
arXiv Detail & Related papers (2024-11-07T17:48:37Z) - Spectral Self-supervised Feature Selection [7.052728135831165]
We propose a self-supervised graph-based approach for unsupervised feature selection.
Our method's core involves computing robust pseudo-labels by applying simple processing steps to the graph Laplacian's eigenvectors.
Our approach is shown to be robust to challenging scenarios, such as the presence of outliers and complex substructures.
arXiv Detail & Related papers (2024-07-12T07:29:08Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
We introduce prospector heads, an efficient and interpretable alternative to explanation-based attribution methods.
We demonstrate how prospector heads enable improved interpretation and discovery of class-specific patterns in input data.
arXiv Detail & Related papers (2024-02-18T23:01:28Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
We propose a novel framework for defining a graph mean via embeddings in the space of smooth graph signal distributions.
By finding a mean in this embedding space, we can recover a mean graph that preserves structural information.
We establish the existence and uniqueness of the novel graph mean, and provide an iterative algorithm for computing it.
arXiv Detail & Related papers (2023-05-31T11:04:53Z) - Unboxing Tree Ensembles for interpretability: a hierarchical
visualization tool and a multivariate optimal re-built tree [0.34530027457862006]
We develop an interpretable representation of a tree-ensemble model that can provide valuable insights into its behavior.
The proposed model is effective in yielding a shallow interpretable tree approxing the tree-ensemble decision function.
arXiv Detail & Related papers (2023-02-15T10:43:31Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Grouped Feature Importance and Combined Features Effect Plot [2.15867006052733]
Interpretable machine learning has become a very active area of research due to the rising popularity of machine learning algorithms.
We provide a comprehensive overview of how existing model-agnostic techniques can be defined for feature groups to assess the grouped feature importance.
We introduce the combined features effect plot, which is a technique to visualize the effect of a group of features based on a sparse, interpretable linear combination of features.
arXiv Detail & Related papers (2021-04-23T16:27:38Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.