Evaluating the Efficacy of LLM-Based Reasoning for Multiobjective HPC Job Scheduling
- URL: http://arxiv.org/abs/2506.02025v1
- Date: Thu, 29 May 2025 14:25:29 GMT
- Title: Evaluating the Efficacy of LLM-Based Reasoning for Multiobjective HPC Job Scheduling
- Authors: Prachi Jadhav, Hongwei Jin, Ewa Deelman, Prasanna Balaprakash,
- Abstract summary: Large Language Model (LLM)-based scheduler uses ReAct-style framework (Reason + Act)<n>System incorporates a scratchpad memory to track scheduling history and refine decisions via natural language feedback.<n>We evaluate our approach using OpenAI's O4-Mini and Anthropic's Claude 3.7 across seven real-world HPC workload scenarios.
- Score: 6.623504719591386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-Performance Computing (HPC) job scheduling involves balancing conflicting objectives such as minimizing makespan, reducing wait times, optimizing resource use, and ensuring fairness. Traditional methods, including heuristic-based (e.g., First-Come-First-Served) or intensive optimization techniques, often lack adaptability to dynamic workloads and heterogeneous HPC systems. To address this, we propose a novel Large Language Model (LLM)-based scheduler using a ReAct-style framework (Reason + Act), enabling iterative, interpretable decision-making. The system incorporates a scratchpad memory to track scheduling history and refine decisions via natural language feedback, while a constraint enforcement module ensures feasibility and safety. We evaluate our approach using OpenAI's O4-Mini and Anthropic's Claude 3.7 across seven real-world HPC workload scenarios, including heterogeneous mixes, bursty patterns, and adversarial cases. Comparisons against FCFS, Shortest Job First, and Google OR-Tools (on 10 to 100 jobs) reveal that LLM-based scheduling effectively balances multiple objectives while offering transparent reasoning through natural language traces. The method excels in constraint satisfaction and adapts to diverse workloads without domain-specific training. However, a trade-off between reasoning quality and computational overhead challenges real-time deployment. This work presents the first comprehensive study of reasoning-capable LLMs for HPC scheduling, demonstrating their potential to handle multiobjective optimization while highlighting limitations in computational efficiency. The findings provide insights into leveraging advanced language models for complex scheduling problems in dynamic HPC environments.
Related papers
- ReflecSched: Solving Dynamic Flexible Job-Shop Scheduling via LLM-Powered Hierarchical Reflection [4.101501114944147]
ReflecSched is a framework that empowers the LLM beyond a direct scheduler.<n>It distills simulations across multiple planning horizons into a concise, natural-language summary.<n>This summary is then integrated into the prompt of a final decision-making module, guiding it to produce non-myopic actions.
arXiv Detail & Related papers (2025-08-03T11:26:35Z) - Reasoning on a Budget: A Survey of Adaptive and Controllable Test-Time Compute in LLMs [45.83245433138508]
Large language models (LLMs) have rapidly progressed into general-purpose agents capable of solving a broad spectrum of tasks.<n>They apply fixed inference-time compute regardless of task complexity, often overthinking simple problems while underthinking hard ones.<n>This survey presents a comprehensive review of efficient test-time compute strategies, which aim to improve the computational efficiency of LLM reasoning.
arXiv Detail & Related papers (2025-07-02T18:27:42Z) - Planning without Search: Refining Frontier LLMs with Offline Goal-Conditioned RL [62.984693936073974]
Large language models (LLMs) excel in tasks like question answering and dialogue.<n>Complex tasks requiring interaction, such as negotiation and persuasion, require additional long-horizon reasoning and planning.<n>We propose a novel approach that uses goal-conditioned value functions to guide the reasoning of LLM agents.
arXiv Detail & Related papers (2025-05-23T16:51:54Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Efficient Domain Adaptation of Multimodal Embeddings using Constrastive Learning [0.08192907805418582]
Current approaches either yield subpar results when using pretrained models without task-specific adaptation, or require substantial computational resources for fine-tuning.<n>We propose a novel method for adapting foundational, multimodal embeddings to downstream tasks, without the need of expensive fine-tuning processes.
arXiv Detail & Related papers (2025-02-04T06:30:12Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making.
Recent techniques have sought to structure LLM outputs using control flow and other code-adjacent techniques to improve planning performance.
We propose REPL-Plan, an LLM planning approach that is fully code-expressive and dynamic.
arXiv Detail & Related papers (2024-11-21T04:23:17Z) - ALISE: Accelerating Large Language Model Serving with Speculative Scheduling [7.367068885621016]
Large Language Models (LLMs) represent a revolutionary advancement in the contemporary landscape of artificial general intelligence (AGI)
In this paper, we propose a new efficient LLM inference serving framework, named ALISE.
We show that ALISE improves the throughput of inference serving by up to 1.8x and 2.1x under the same latency constraint on the Alpaca and ShareGPT datasets, respectively.
arXiv Detail & Related papers (2024-10-31T00:58:11Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - AXOLOTL: Fairness through Assisted Self-Debiasing of Large Language
Model Outputs [20.772266479533776]
AXOLOTL is a novel post-processing framework that operates agnostically across tasks and models.
It identifies biases, proposes resolutions, and guides the model to self-debias its outputs.
This approach minimizes computational costs and preserves model performance.
arXiv Detail & Related papers (2024-03-01T00:02:37Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - A Memetic Algorithm with Reinforcement Learning for Sociotechnical
Production Scheduling [0.0]
This article presents a memetic algorithm with applying deep reinforcement learning (DRL) to flexible job shop scheduling problems (DRC-FJSSP)
From research projects in industry, we recognize the need to consider flexible machines, flexible human workers, worker capabilities, setup and processing operations, material arrival times, complex job paths with parallel tasks for bill of material manufacturing, sequence-dependent setup times and (partially) automated tasks in human-machine-collaboration.
arXiv Detail & Related papers (2022-12-21T11:24:32Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.