ReflecSched: Solving Dynamic Flexible Job-Shop Scheduling via LLM-Powered Hierarchical Reflection
- URL: http://arxiv.org/abs/2508.01724v1
- Date: Sun, 03 Aug 2025 11:26:35 GMT
- Title: ReflecSched: Solving Dynamic Flexible Job-Shop Scheduling via LLM-Powered Hierarchical Reflection
- Authors: Shijie Cao, Yuan Yuan,
- Abstract summary: ReflecSched is a framework that empowers the LLM beyond a direct scheduler.<n>It distills simulations across multiple planning horizons into a concise, natural-language summary.<n>This summary is then integrated into the prompt of a final decision-making module, guiding it to produce non-myopic actions.
- Score: 4.101501114944147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic Flexible Job-Shop Scheduling (DFJSP) is an NP-hard problem challenged by real-time event adaptation and complex machine routing. While traditional dispatching rules are efficient but rigid, deep learning approaches are opaque and require intricate feature engineering. Large Language Models (LLMs) promise adaptive reasoning without this engineering overhead, yet we find their direct application is suboptimal. Baseline LLMs suffer from three key pitfalls: the long-context paradox, where crucial data is underutilized; an underutilization of expert heuristics; and myopic decision-making. To address this, we propose ReflecSched, a framework that empowers the LLM beyond a direct scheduler by equipping it with a strategic analysis capability. ReflecSched tasks the LLM to analyze heuristic-driven simulations across multiple planning horizons and distill them into a concise, natural-language summary termed ``Strategic Experience''. This summary is then integrated into the prompt of a final decision-making module, guiding it to produce non-myopic actions. Experiments show that ReflecSched not only statistically significantly outperforms direct LLM baselines, securing a 71.35\% Win Rate and a 2.755\% Relative Percentage Deviation reduction, but also surpasses the performance of all individual heuristics evaluated, all while demonstrably mitigating the three identified pitfalls. Additionally, ReflecSched performs on par with the best heuristic tailored to each instance across all problem cases.
Related papers
- Towards Efficient Multi-LLM Inference: Characterization and Analysis of LLM Routing and Hierarchical Techniques [14.892995952768352]
Language Models (LMs) have excelled at tasks like text generation, summarization, and question answering.<n>Their inference remains computationally expensive and energy intensive in settings with limited hardware, power, or bandwidth.<n>Recent approaches have introduced multi LLM intelligent model selection strategies that dynamically allocate computational resources based on query complexity.
arXiv Detail & Related papers (2025-06-06T23:13:08Z) - Evaluating the Efficacy of LLM-Based Reasoning for Multiobjective HPC Job Scheduling [6.623504719591386]
Large Language Model (LLM)-based scheduler uses ReAct-style framework (Reason + Act)<n>System incorporates a scratchpad memory to track scheduling history and refine decisions via natural language feedback.<n>We evaluate our approach using OpenAI's O4-Mini and Anthropic's Claude 3.7 across seven real-world HPC workload scenarios.
arXiv Detail & Related papers (2025-05-29T14:25:29Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - ELIS: Efficient LLM Iterative Scheduling System with Response Length Predictor [5.097511974401423]
ELIS is a serving system for Large Language Models (LLMs) featuring an Iterative Shortest Remaining Time First (ISRTF) scheduler.<n>ISRTF scheduler efficiently manages inference tasks with the shortest remaining time.
arXiv Detail & Related papers (2025-05-14T04:50:00Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Teaching LLMs According to Their Aptitude: Adaptive Reasoning for Mathematical Problem Solving [55.895917967408586]
Existing approaches to mathematical reasoning with large language models rely on Chain-of-Thought (CoT) for generalizability or Tool-Integrated Reasoning (TIR) for precise computation.<n>We propose TATA (Teaching LLMs According to Their Aptitude), an adaptive framework that enables LLMs to personalize their reasoning strategy spontaneously.
arXiv Detail & Related papers (2025-02-17T16:56:23Z) - Dspy-based Neural-Symbolic Pipeline to Enhance Spatial Reasoning in LLMs [29.735465300269993]
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they often struggle with spatial reasoning.<n>This paper presents a novel neural-symbolic framework that enhances LLMs' spatial reasoning abilities through iterative feedback between LLMs and Answer Set Programming (ASP)<n>We evaluate our approach on two benchmark datasets: StepGame and SparQA.
arXiv Detail & Related papers (2024-11-27T18:04:05Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.