A Brain Graph Foundation Model: Pre-Training and Prompt-Tuning for Any Atlas and Disorder
- URL: http://arxiv.org/abs/2506.02044v2
- Date: Sun, 03 Aug 2025 12:24:00 GMT
- Title: A Brain Graph Foundation Model: Pre-Training and Prompt-Tuning for Any Atlas and Disorder
- Authors: Xinxu Wei, Kanhao Zhao, Yong Jiao, Lifang He, Yu Zhang,
- Abstract summary: We propose a novel graph-based pre-training paradigm for constructing a brain graph foundation model.<n>BrainGFM is pre-trained on a diverse mixture of brain atlases with varying parcellations.<n>BrainGFM is pre-trained on 27 datasets spanning 25 common neurological and psychiatric disorders.
- Score: 9.83654608793608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As large language models (LLMs) continue to revolutionize AI research, there is a growing interest in building large-scale brain foundation models to advance neuroscience. While most existing brain foundation models are pre-trained on time-series signals or connectome features, we propose a novel graph-based pre-training paradigm for constructing a brain graph foundation model. In this paper, we introduce the Brain Graph Foundation Model, termed BrainGFM, a unified framework that leverages graph contrastive learning and graph masked autoencoders for large-scale fMRI-based pre-training. BrainGFM is pre-trained on a diverse mixture of brain atlases with varying parcellations, significantly expanding the pre-training corpus and enhancing the model's ability to generalize across heterogeneous fMRI-derived brain representations. To support efficient and versatile downstream transfer, we integrate both graph prompts and language prompts into the model design, enabling BrainGFM to flexibly adapt to a wide range of atlases, neurological and psychiatric disorders, and task settings. Furthermore, we employ meta-learning to optimize the graph prompts, facilitating strong generalization to previously unseen disorders under both few-shot and zero-shot learning conditions via language-guided prompting. BrainGFM is pre-trained on 27 neuroimaging datasets spanning 25 common neurological and psychiatric disorders, encompassing 2 types of brain atlases (functional and anatomical) across 8 widely-used parcellations, and covering over 25,000 subjects, 60,000 fMRI scans, and a total of 400,000 graph samples aggregated across all atlases and parcellations. The code is available at: https://github.com/weixinxu666/BrainGFM
Related papers
- A Brain-to-Population Graph Learning Framework for Diagnosing Brain Disorders [4.240715287754908]
We propose a two-stage Brain-to-Population Graph Learning framework.<n>In the first stage, termed brain representation learning, we leverage brain atlas knowledge from GPT-4 to enrich the graph representation.<n>In the second stage, termed population disorder diagnosis, phenotypic data is incorporated into population graph construction and feature fusion to mitigate confounding effects.
arXiv Detail & Related papers (2025-06-19T07:32:57Z) - Voxel-Level Brain States Prediction Using Swin Transformer [65.9194533414066]
We propose a novel architecture which employs a 4D Shifted Window (Swin) Transformer as encoder to efficiently learn-temporal information and a convolutional decoder to enable brain state prediction at the same spatial and temporal resolution as the input fMRI data.<n>Our model has shown high accuracy when predicting 7.2s resting-state brain activities based on the prior 23.04s fMRI time series.<n>This shows promising evidence that thetemporal organization of the human brain can be learned by a Swin Transformer model, at high resolution, which provides a potential for reducing fMRI scan time and the development of brain-computer interfaces
arXiv Detail & Related papers (2025-06-13T04:14:38Z) - Rethinking Functional Brain Connectome Analysis: Do Graph Deep Learning Models Help? [26.993152836226084]
We re-examine graph deep learning models based on four large-scale neuroimaging studies.<n>We find that the message aggregation mechanism, a hallmark of graph deep learning models, does not help with predictive performance as typically assumed.<n>To address this issue, we propose a hybrid model combining a linear model with a graph attention network through dual pathways.
arXiv Detail & Related papers (2025-01-28T07:24:16Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - BrainSegFounder: Towards 3D Foundation Models for Neuroimage Segmentation [6.5388528484686885]
This study introduces a novel approach towards the creation of medical foundation models.
Our method involves a novel two-stage pretraining approach using vision transformers.
BrainFounder demonstrates a significant performance gain, surpassing the achievements of previous winning solutions.
arXiv Detail & Related papers (2024-06-14T19:49:45Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
Graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data.
GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention.
In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs.
arXiv Detail & Related papers (2024-06-01T02:47:39Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - HDGL: A hierarchical dynamic graph representation learning model for
brain disorder classification [1.7495515703051119]
We propose a hierarchical dynamic graph representation learning (HDGL) model, which is the first model designed to address all the aforementioned challenges.
We evaluate the performance of the proposed model on the ABIDE and ADHD-200 datasets.
arXiv Detail & Related papers (2023-11-06T06:29:23Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
Graphs are a natural representation of brain activity derived from functional magnetic imaging (fMRI) data.
It is well known that clusters of anatomical brain regions, known as functional connectivity networks (FCNs), encode temporal relationships which can serve as useful biomarkers for understanding brain function and dysfunction.
Previous works, however, ignore the temporal dynamics of the brain and focus on static graphs.
We propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously clusters brain regions into temporally evolving communities and learns dynamic unsupervised node embeddings.
arXiv Detail & Related papers (2023-01-26T20:45:30Z) - Data-Driven Network Neuroscience: On Data Collection and Benchmark [6.796086914275059]
This paper presents a collection of functional human brain network data for potential research in the intersection of neuroscience, machine learning, and graph analytics.
The datasets originate from 6 different sources, cover 4 brain conditions, and consist of a total of 2,702 subjects.
arXiv Detail & Related papers (2022-11-11T02:14:28Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormer is a general hybrid Transformer architecture for brain disease classification with single fMRI volume.
BrainFormer is constructed by modeling the local cues within each voxel with 3D convolutions.
We evaluate BrainFormer on five independently acquired datasets including ABIDE, ADNI, MPILMBB, ADHD-200 and ECHO.
arXiv Detail & Related papers (2022-08-05T07:54:10Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.