HDGL: A hierarchical dynamic graph representation learning model for
brain disorder classification
- URL: http://arxiv.org/abs/2311.02903v1
- Date: Mon, 6 Nov 2023 06:29:23 GMT
- Title: HDGL: A hierarchical dynamic graph representation learning model for
brain disorder classification
- Authors: Parniyan Jalali, Mehran Safayani
- Abstract summary: We propose a hierarchical dynamic graph representation learning (HDGL) model, which is the first model designed to address all the aforementioned challenges.
We evaluate the performance of the proposed model on the ABIDE and ADHD-200 datasets.
- Score: 1.7495515703051119
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The human brain can be considered as complex networks, composed of various
regions that continuously exchange their information with each other, forming
the brain network graph, from which nodes and edges are extracted using
resting-state functional magnetic resonance imaging (rs-fMRI). Therefore, this
graph can potentially depict abnormal patterns that have emerged under the
influence of brain disorders. So far, numerous studies have attempted to find
embeddings for brain network graphs and subsequently classify samples with
brain disorders from healthy ones, which include limitations such as: not
considering the relationship between samples, not utilizing phenotype
information, lack of temporal analysis, using static functional connectivity
(FC) instead of dynamic ones and using a fixed graph structure. We propose a
hierarchical dynamic graph representation learning (HDGL) model, which is the
first model designed to address all the aforementioned challenges. HDGL
consists of two levels, where at the first level, it constructs brain network
graphs and learns their spatial and temporal embeddings, and at the second
level, it forms population graphs and performs classification after embedding
learning. Furthermore, based on how these two levels are trained, four methods
have been introduced, some of which are suggested for reducing memory
complexity. We evaluated the performance of the proposed model on the ABIDE and
ADHD-200 datasets, and the results indicate the improvement of this model
compared to several state-of-the-art models in terms of various evaluation
metrics.
Related papers
- Topology-Aware Graph Augmentation for Predicting Clinical Trajectories in Neurocognitive Disorders [27.280927277680515]
We propose a topology-aware graph augmentation (TGA) framework, comprising a pretext model to train a generalizable encoder and a task-specific model to perform downstream tasks.
Experiments on 1, 688 fMRI scans suggest that TGA outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2024-10-31T19:37:20Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
Graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data.
GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention.
In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs.
arXiv Detail & Related papers (2024-06-01T02:47:39Z) - Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
We introduce an aggregator normalization graph convolutional network by leveraging aggregation in graph sampling.
The proposed model learns discriminative graph node representations by incorporating both imaging and non-imaging features into the graph nodes and edges.
We benchmark our model against several recent baseline methods on two large datasets, Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer's Disease Neuroimaging Initiative (ADNI)
arXiv Detail & Related papers (2023-11-13T14:36:29Z) - TiBGL: Template-induced Brain Graph Learning for Functional Neuroimaging
Analysis [27.23929515170454]
This paper proposes a novel brain graph learning framework called template-induced Brain Graph Learning (TiBGL)
TiBGL has both discriminative and interpretable abilities.
Experimental results on three real-world datasets show that the proposed TiBGL can achieve superior performance compared with nine state-of-the-art methods.
arXiv Detail & Related papers (2023-09-14T15:17:42Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
Graphs are a natural representation of brain activity derived from functional magnetic imaging (fMRI) data.
It is well known that clusters of anatomical brain regions, known as functional connectivity networks (FCNs), encode temporal relationships which can serve as useful biomarkers for understanding brain function and dysfunction.
Previous works, however, ignore the temporal dynamics of the brain and focus on static graphs.
We propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously clusters brain regions into temporally evolving communities and learns dynamic unsupervised node embeddings.
arXiv Detail & Related papers (2023-01-26T20:45:30Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling [0.0]
We propose a dynamic adaptivetemporal graph convolution (DASTGCN) model to overcome the shortcomings of pre-defined static correlation-based graph structures.
The proposed approach allows end-to-end inference of dynamic connections between brain regions via layer-wise graph structure learning module.
We evaluate our pipeline on the UKBiobank for age and gender classification tasks from resting-state functional scans.
arXiv Detail & Related papers (2021-09-26T07:19:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.