A Brain-to-Population Graph Learning Framework for Diagnosing Brain Disorders
- URL: http://arxiv.org/abs/2506.16096v1
- Date: Thu, 19 Jun 2025 07:32:57 GMT
- Title: A Brain-to-Population Graph Learning Framework for Diagnosing Brain Disorders
- Authors: Qianqian Liao, Wuque Cai, Hongze Sun, Dongze Liu, Duo Chen, Dezhong Yao, Daqing Guo,
- Abstract summary: We propose a two-stage Brain-to-Population Graph Learning framework.<n>In the first stage, termed brain representation learning, we leverage brain atlas knowledge from GPT-4 to enrich the graph representation.<n>In the second stage, termed population disorder diagnosis, phenotypic data is incorporated into population graph construction and feature fusion to mitigate confounding effects.
- Score: 4.240715287754908
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent developed graph-based methods for diagnosing brain disorders using functional connectivity highly rely on predefined brain atlases, but overlook the rich information embedded within atlases and the confounding effects of site and phenotype variability. To address these challenges, we propose a two-stage Brain-to-Population Graph Learning (B2P-GL) framework that integrates the semantic similarity of brain regions and condition-based population graph modeling. In the first stage, termed brain representation learning, we leverage brain atlas knowledge from GPT-4 to enrich the graph representation and refine the brain graph through an adaptive node reassignment graph attention network. In the second stage, termed population disorder diagnosis, phenotypic data is incorporated into population graph construction and feature fusion to mitigate confounding effects and enhance diagnosis performance. Experiments on the ABIDE I, ADHD-200, and Rest-meta-MDD datasets show that B2P-GL outperforms state-of-the-art methods in prediction accuracy while enhancing interpretability. Overall, our proposed framework offers a reliable and personalized approach to brain disorder diagnosis, advancing clinical applicability.
Related papers
- Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
Graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data.
GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention.
In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs.
arXiv Detail & Related papers (2024-06-01T02:47:39Z) - Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
We introduce an aggregator normalization graph convolutional network by leveraging aggregation in graph sampling.
The proposed model learns discriminative graph node representations by incorporating both imaging and non-imaging features into the graph nodes and edges.
We benchmark our model against several recent baseline methods on two large datasets, Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer's Disease Neuroimaging Initiative (ADNI)
arXiv Detail & Related papers (2023-11-13T14:36:29Z) - HDGL: A hierarchical dynamic graph representation learning model for
brain disorder classification [1.7495515703051119]
We propose a hierarchical dynamic graph representation learning (HDGL) model, which is the first model designed to address all the aforementioned challenges.
We evaluate the performance of the proposed model on the ABIDE and ADHD-200 datasets.
arXiv Detail & Related papers (2023-11-06T06:29:23Z) - TiBGL: Template-induced Brain Graph Learning for Functional Neuroimaging
Analysis [27.23929515170454]
This paper proposes a novel brain graph learning framework called template-induced Brain Graph Learning (TiBGL)
TiBGL has both discriminative and interpretable abilities.
Experimental results on three real-world datasets show that the proposed TiBGL can achieve superior performance compared with nine state-of-the-art methods.
arXiv Detail & Related papers (2023-09-14T15:17:42Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Multimodal brain age estimation using interpretable adaptive
population-graph learning [58.99653132076496]
We propose a framework that learns a population graph structure optimized for the downstream task.
An attention mechanism assigns weights to a set of imaging and non-imaging features.
By visualizing the attention weights that were the most important for the graph construction, we increase the interpretability of the graph.
arXiv Detail & Related papers (2023-07-10T15:35:31Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
Graphs are a natural representation of brain activity derived from functional magnetic imaging (fMRI) data.
It is well known that clusters of anatomical brain regions, known as functional connectivity networks (FCNs), encode temporal relationships which can serve as useful biomarkers for understanding brain function and dysfunction.
Previous works, however, ignore the temporal dynamics of the brain and focus on static graphs.
We propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously clusters brain regions into temporally evolving communities and learns dynamic unsupervised node embeddings.
arXiv Detail & Related papers (2023-01-26T20:45:30Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormer is a general hybrid Transformer architecture for brain disease classification with single fMRI volume.
BrainFormer is constructed by modeling the local cues within each voxel with 3D convolutions.
We evaluate BrainFormer on five independently acquired datasets including ABIDE, ADNI, MPILMBB, ADHD-200 and ECHO.
arXiv Detail & Related papers (2022-08-05T07:54:10Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Learning Multi-resolution Graph Edge Embedding for Discovering Brain Network Dysfunction in Neurological Disorders [10.12649945620901]
We propose Multi-resolution Edge Network (MENET) to detect disease-specific connectomic benchmarks.
MENET accurately predicts diagnostic labels and identifies brain connectivities highly associated with neurological disorders.
arXiv Detail & Related papers (2019-12-03T03:46:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.