Decoupled Hierarchical Reinforcement Learning with State Abstraction for Discrete Grids
- URL: http://arxiv.org/abs/2506.02050v1
- Date: Sun, 01 Jun 2025 06:36:19 GMT
- Title: Decoupled Hierarchical Reinforcement Learning with State Abstraction for Discrete Grids
- Authors: Qingyu Xiao, Yuanlin Chang, Youtian Du,
- Abstract summary: This paper presents a decoupled hierarchical RL framework integrating state abstraction (DcHRL-SA)<n> Experiments conducted in two customized grid environments demonstrate that the proposed approach consistently outperforms PPO in terms of exploration efficiency, convergence speed, cumulative reward, and policy stability.
- Score: 3.772834044395258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective agent exploration remains a core challenge in reinforcement learning (RL) for complex discrete state-space environments, particularly under partial observability. This paper presents a decoupled hierarchical RL framework integrating state abstraction (DcHRL-SA) to address this issue. The proposed method employs a dual-level architecture, consisting of a high level RL-based actor and a low-level rule-based policy, to promote effective exploration. Additionally, state abstraction method is incorporated to cluster discrete states, effectively lowering state dimensionality. Experiments conducted in two discrete customized grid environments demonstrate that the proposed approach consistently outperforms PPO in terms of exploration efficiency, convergence speed, cumulative reward, and policy stability. These results demonstrate a practical approach for integrating decoupled hierarchical policies and state abstraction in discrete grids with large-scale exploration space. Code will be available at https://github.com/XQY169/DcHRL-SA.
Related papers
- Policy Regularization on Globally Accessible States in Cross-Dynamics Reinforcement Learning [53.9544543607396]
We propose a novel framework that integrates reward rendering with Imitation from Observation (IfO)<n>By instantiating F-distance in different ways, we derive two theoretical analysis and develop a practical algorithm called Accessible State Oriented Policy Regularization (ASOR)<n>ASOR serves as a general add-on module that can be incorporated into various approaches RL, including offline RL and off-policy RL.
arXiv Detail & Related papers (2025-03-10T03:50:20Z) - Action abstractions for amortized sampling [49.384037138511246]
We propose an approach to incorporate the discovery of action abstractions, or high-level actions, into the policy optimization process.
Our approach involves iteratively extracting action subsequences commonly used across many high-reward trajectories and chunking' them into a single action that is added to the action space.
arXiv Detail & Related papers (2024-10-19T19:22:50Z) - Exploring the limits of Hierarchical World Models in Reinforcement Learning [0.7499722271664147]
We describe a novel HMBRL framework and evaluate it thoroughly.
We construct hierarchical world models that simulate environment dynamics at various levels of temporal abstraction.
Unlike most goal-conditioned H(MB)RL approaches, it also leads to comparatively low dimensional abstract actions.
arXiv Detail & Related papers (2024-06-01T16:29:03Z) - One-Step Distributional Reinforcement Learning [10.64435582017292]
We present the simpler one-step distributional reinforcement learning (OS-DistrRL) framework.
We show that our approach comes with a unified theory for both policy evaluation and control.
We propose two OS-DistrRL algorithms for which we provide an almost sure convergence analysis.
arXiv Detail & Related papers (2023-04-27T06:57:00Z) - Exploiting Multiple Abstractions in Episodic RL via Reward Shaping [23.61187560936501]
We consider a linear hierarchy of abstraction layers of the Markov Decision Process (MDP) underlying the target domain.
We propose a novel form of Reward Shaping where the solution obtained at the abstract level is used to offer rewards to the more concrete MDP.
arXiv Detail & Related papers (2023-02-28T13:22:29Z) - Near-optimal Policy Identification in Active Reinforcement Learning [84.27592560211909]
AE-LSVI is a novel variant of the kernelized least-squares value RL (LSVI) algorithm that combines optimism with pessimism for active exploration.
We show that AE-LSVI outperforms other algorithms in a variety of environments when robustness to the initial state is required.
arXiv Detail & Related papers (2022-12-19T14:46:57Z) - Adjacency constraint for efficient hierarchical reinforcement learning [25.15808501708926]
Goal-conditioned Reinforcement Learning (HRL) is a promising approach for scaling up reinforcement learning (RL) techniques.
HRL often suffers from training inefficiency as the action space of the high-level, i.e., the goal space, is large.
We show that this problem can be effectively alleviated by restricting the high-level action space to a $k$-step adjacent region of the current state.
arXiv Detail & Related papers (2021-10-30T09:26:45Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z) - Generating Adjacency-Constrained Subgoals in Hierarchical Reinforcement
Learning [22.319208517053816]
Goal-conditioned hierarchical reinforcement learning (HRL) is a promising approach for scaling up reinforcement learning techniques.
HRL often suffers from training inefficiency as the action space of the high-level, i.e., the goal space, is often large.
We show that a constraint on the action space can be effectively alleviated by restricting it to a $k$-step adjacent region of the current state.
arXiv Detail & Related papers (2020-06-20T03:34:45Z) - Deep Reinforcement Learning with Robust and Smooth Policy [90.78795857181727]
We propose to learn a smooth policy that behaves smoothly with respect to states.
We develop a new framework -- textbfSmooth textbfRegularized textbfReinforcement textbfLearning ($textbfSR2textbfL$), where the policy is trained with smoothness-inducing regularization.
Such regularization effectively constrains the search space, and enforces smoothness in the learned policy.
arXiv Detail & Related papers (2020-03-21T00:10:29Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.