Action abstractions for amortized sampling
- URL: http://arxiv.org/abs/2410.15184v1
- Date: Sat, 19 Oct 2024 19:22:50 GMT
- Title: Action abstractions for amortized sampling
- Authors: Oussama Boussif, Léna Néhale Ezzine, Joseph D Viviano, Michał Koziarski, Moksh Jain, Nikolay Malkin, Emmanuel Bengio, Rim Assouel, Yoshua Bengio,
- Abstract summary: We propose an approach to incorporate the discovery of action abstractions, or high-level actions, into the policy optimization process.
Our approach involves iteratively extracting action subsequences commonly used across many high-reward trajectories and chunking' them into a single action that is added to the action space.
- Score: 49.384037138511246
- License:
- Abstract: As trajectories sampled by policies used by reinforcement learning (RL) and generative flow networks (GFlowNets) grow longer, credit assignment and exploration become more challenging, and the long planning horizon hinders mode discovery and generalization. The challenge is particularly pronounced in entropy-seeking RL methods, such as generative flow networks, where the agent must learn to sample from a structured distribution and discover multiple high-reward states, each of which take many steps to reach. To tackle this challenge, we propose an approach to incorporate the discovery of action abstractions, or high-level actions, into the policy optimization process. Our approach involves iteratively extracting action subsequences commonly used across many high-reward trajectories and `chunking' them into a single action that is added to the action space. In empirical evaluation on synthetic and real-world environments, our approach demonstrates improved sample efficiency performance in discovering diverse high-reward objects, especially on harder exploration problems. We also observe that the abstracted high-order actions are interpretable, capturing the latent structure of the reward landscape of the action space. This work provides a cognitively motivated approach to action abstraction in RL and is the first demonstration of hierarchical planning in amortized sequential sampling.
Related papers
- Model-Free Active Exploration in Reinforcement Learning [53.786439742572995]
We study the problem of exploration in Reinforcement Learning and present a novel model-free solution.
Our strategy is able to identify efficient policies faster than state-of-the-art exploration approaches.
arXiv Detail & Related papers (2024-06-30T19:00:49Z) - Diffusion-Reinforcement Learning Hierarchical Motion Planning in Adversarial Multi-agent Games [6.532258098619471]
We focus on a motion planning task for an evasive target in a partially observable multi-agent adversarial pursuit-evasion games (PEG)
These pursuit-evasion problems are relevant to various applications, such as search and rescue operations and surveillance robots.
We propose a hierarchical architecture that integrates a high-level diffusion model to plan global paths responsive to environment data.
arXiv Detail & Related papers (2024-03-16T03:53:55Z) - Imagine, Initialize, and Explore: An Effective Exploration Method in
Multi-Agent Reinforcement Learning [27.81925751697255]
We propose a novel method for efficient multi-agent exploration in complex scenarios.
We formulate the imagination as a sequence modeling problem, where the states, observations, prompts, actions, and rewards are predicted autoregressively.
By initializing agents at the critical states, IIE significantly increases the likelihood of discovering potentially important underexplored regions.
arXiv Detail & Related papers (2024-02-28T01:45:01Z) - Adaptive trajectory-constrained exploration strategy for deep
reinforcement learning [6.589742080994319]
Deep reinforcement learning (DRL) faces significant challenges in addressing the hard-exploration problems in tasks with sparse or deceptive rewards and large state spaces.
We propose an efficient adaptive trajectory-constrained exploration strategy for DRL.
We conduct experiments on two large 2D grid world mazes and several MuJoCo tasks.
arXiv Detail & Related papers (2023-12-27T07:57:15Z) - Landmark Guided Active Exploration with State-specific Balance Coefficient [4.539657469634845]
We design a measure of prospect for sub-goals by planning in the goal space based on the goal-conditioned value function.
We propose a landmark-guided exploration strategy by integrating the measures of prospect and novelty.
arXiv Detail & Related papers (2023-06-30T08:54:47Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
We propose an easy-to-implement online reinforcement learning (online RL) framework called textttMEX.
textttMEX integrates estimation and planning components while balancing exploration exploitation automatically.
It can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards.
arXiv Detail & Related papers (2023-05-29T17:25:26Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
We develop a method that allows us to plan for exploration while taking the task and the current knowledge into account.
We demonstrate that our method learns strong policies with 2x fewer samples than strong exploration baselines.
arXiv Detail & Related papers (2022-10-06T20:28:55Z) - Deep Intrinsically Motivated Exploration in Continuous Control [0.0]
In continuous systems, exploration is often performed through undirected strategies in which parameters of the networks or selected actions are perturbed by random noise.
We adapt existing theories on animal motivational systems into the reinforcement learning paradigm and introduce a novel directed exploration strategy.
Our framework extends to larger and more diverse state spaces, dramatically improves the baselines, and outperforms the undirected strategies significantly.
arXiv Detail & Related papers (2022-10-01T14:52:16Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
This paper introduces an active inference agent which minimizes the novel free energy of the expected future.
Our model is capable of solving sparse-reward problems with a very high sample efficiency.
We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives.
arXiv Detail & Related papers (2021-06-04T10:03:36Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.