論文の概要: Alzheimers Disease Classification in Functional MRI With 4D Joint Temporal-Spatial Kernels in Novel 4D CNN Model
- arxiv url: http://arxiv.org/abs/2506.02060v1
- Date: Sun, 01 Jun 2025 15:57:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:34.887681
- Title: Alzheimers Disease Classification in Functional MRI With 4D Joint Temporal-Spatial Kernels in Novel 4D CNN Model
- Title(参考訳): 新しい4次元CNNモデルにおける機能MRIにおけるアルツハイマー病の分類
- Authors: Javier Salazar Cavazos, Scott Peltier,
- Abstract要約: 本研究では,新しい4次元畳み込みネットワークを開発し,時間空間カーネルを抽出する。
4D CNNモデルは、RS-fMRIデータに対するアルツハイマー病の診断を改善し、早期発見とより良い介入を可能にする。
今後の研究は、タスクベースのfMRIアプリケーションと回帰タスクを探求し、認知能力と疾患進行の理解を深める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Previous works in the literature apply 3D spatial-only models on 4D functional MRI data leading to possible sub-par feature extraction to be used for downstream tasks like classification. In this work, we aim to develop a novel 4D convolution network to extract 4D joint temporal-spatial kernels that not only learn spatial information but in addition also capture temporal dynamics. Experimental results show promising performance in capturing spatial-temporal data in functional MRI compared to 3D models. The 4D CNN model improves Alzheimers disease diagnosis for rs-fMRI data, enabling earlier detection and better interventions. Future research could explore task-based fMRI applications and regression tasks, enhancing understanding of cognitive performance and disease progression.
- Abstract(参考訳): 文献におけるこれまでの研究は、4次元機能的MRIデータに3次元空間限定モデルを適用し、分類のような下流タスクに使用できるサブパー特徴抽出を可能にした。
本研究では,空間情報を学習するだけでなく,時間的ダイナミクスも捉えることを目的として,新しい4次元畳み込みネットワークを構築した。
実験結果から, 3次元モデルと比較して, 機能的MRIにおける空間時空間データ取得に有望な性能を示した。
4D CNNモデルは、RS-fMRIデータに対するアルツハイマー病の診断を改善し、早期発見とより良い介入を可能にする。
今後の研究は、タスクベースのfMRIアプリケーションと回帰タスクを探求し、認知能力と疾患進行の理解を深める。
関連論文リスト
- MinD-3D++: Advancing fMRI-Based 3D Reconstruction with High-Quality Textured Mesh Generation and a Comprehensive Dataset [50.534007259536715]
機能的磁気共鳴イメージング(fMRI)データから3次元視覚を再構成することは、認知神経科学とコンピュータビジョンにとって重要な関心事である。
我々は15人の参加者のデータを含むfMRI-3Dデータセットを提示し、合計4,768個の3Dオブジェクトを展示する。
テクスチャ化された3次元視覚情報をfMRI信号から復号する新しいフレームワークMinD-3D++を提案する。
論文 参考訳(メタデータ) (2024-09-17T16:13:59Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
被験者のfMRIデータを入力として利用する新しい3Dオブジェクト表現学習手法であるBrain3Dを設計する。
我々は,人間の視覚系の各領域の異なる機能的特徴を,我々のモデルが捉えていることを示す。
予備評価は、Brain3Dがシミュレーションシナリオで障害した脳領域を正常に識別できることを示唆している。
論文 参考訳(メタデータ) (2024-05-24T06:06:11Z) - Video4MRI: An Empirical Study on Brain Magnetic Resonance Image
Analytics with CNN-based Video Classification Frameworks [60.42012344842292]
3次元CNNモデルが磁気共鳴画像(MRI)解析の分野を支配している。
本稿では,アルツハイマー病とパーキンソン病の認識の4つのデータセットを実験に利用した。
効率の面では、ビデオフレームワークは3D-CNNモデルよりも5%から11%、トレーニング可能なパラメータは50%から66%少ない。
論文 参考訳(メタデータ) (2023-02-24T15:26:31Z) - fMRI-S4: learning short- and long-range dynamic fMRI dependencies using
1D Convolutions and State Space Models [0.0]
fMRI-S4は、静止状態機能MRIから表現型と精神疾患を分類するための汎用的なディープラーニングモデルである。
我々は,fMRI-S4が3つのタスクすべてにおいて既存の手法よりも優れており,各設定ごとに特別なパラメータ調整を行わずに,プラグ&プレイモデルとして訓練できることを示す。
論文 参考訳(メタデータ) (2022-08-08T14:07:25Z) - Highly Accurate FMRI ADHD Classification using time distributed multi
modal 3D CNNs [0.0]
本研究では,ADHD障害分類のためのfMRIデータ解析アルゴリズムを提案する。
3D-GANを利用することで、ディープフェイクデータを使用して脳障害の3D CNN分類の精度を高めることができる。
論文 参考訳(メタデータ) (2022-05-24T11:39:11Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - 4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification [69.62333053044712]
ASD分類のための4次元畳み込み深層学習手法を提案する。
F1スコアは0.71、F1スコアは0.65であるのに対し、我々は4Dニューラルネットワークと畳み込みリカレントモデルを採用する。
論文 参考訳(メタデータ) (2020-04-21T17:19:06Z) - Attend and Decode: 4D fMRI Task State Decoding Using Attention Models [2.6954666679827137]
我々は、Brain Attend and Decode (BAnD)と呼ばれる新しいアーキテクチャを提案する。
BAnDは残留畳み込みニューラルネットワークを用いて空間的特徴抽出と時間的モデリングを行う。
我々は,Human Connectome Project-Young Adult データセットの 7-task ベンチマークによる以前の研究と比較して,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2020-04-10T21:29:34Z) - A Hybrid 3DCNN and 3DC-LSTM based model for 4D Spatio-temporal fMRI
data: An ABIDE Autism Classification study [0.0]
本稿では,3次元CNNと3次元磁気LSTMを用いて,全4次元データから特徴を抽出できるエンドツーエンドアルゴリズムを提案する。
提案手法は,NYUサイトとUMサイトにおいて,F1スコア0.78,0.7の単一サイトにおいて,技術結果の状態を達成できることを示す。
論文 参考訳(メタデータ) (2020-02-14T11:52:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。