Unveiling Audio Deepfake Origins: A Deep Metric learning And Conformer Network Approach With Ensemble Fusion
- URL: http://arxiv.org/abs/2506.02085v1
- Date: Mon, 02 Jun 2025 12:42:09 GMT
- Title: Unveiling Audio Deepfake Origins: A Deep Metric learning And Conformer Network Approach With Ensemble Fusion
- Authors: Ajinkya Kulkarni, Sandipana Dowerah, Tanel Alumae, Mathew Magimai. -Doss,
- Abstract summary: This work proposes a novel audio source tracing system combining deep metric multi-class N-pair loss with Real Emphasis and Fake Dispersion framework.<n>We evaluate our method using Frechet Distance and standard metrics, demonstrating superior performance in source tracing over the baseline system.
- Score: 14.903784311213402
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Audio deepfakes are acquiring an unprecedented level of realism with advanced AI. While current research focuses on discerning real speech from spoofed speech, tracing the source system is equally crucial. This work proposes a novel audio source tracing system combining deep metric multi-class N-pair loss with Real Emphasis and Fake Dispersion framework, a Conformer classification network, and ensemble score-embedding fusion. The N-pair loss improves discriminative ability, while Real Emphasis and Fake Dispersion enhance robustness by focusing on differentiating real and fake speech patterns. The Conformer network captures both global and local dependencies in the audio signal, crucial for source tracing. The proposed ensemble score-embedding fusion shows an optimal trade-off between in-domain and out-of-domain source tracing scenarios. We evaluate our method using Frechet Distance and standard metrics, demonstrating superior performance in source tracing over the baseline system.
Related papers
- Synthetic Speech Source Tracing using Metric Learning [18.16033398335838]
This paper addresses source tracing in synthetic speech-identifying generative systems behind manipulated audio via speaker recognition-inspired pipelines.<n>We evaluate two approaches: classification-based and metric-learning.<n>The results show that ResNet achieves competitive performance with the metric learning approach, matching and even exceeding SSL-based systems.
arXiv Detail & Related papers (2025-06-03T08:12:15Z) - Anomaly Detection and Localization for Speech Deepfakes via Feature Pyramid Matching [8.466707742593078]
Speech deepfakes are synthetic audio signals that can imitate target speakers' voices.<n>Existing methods for detecting speech deepfakes rely on supervised learning.<n>We introduce a novel interpretable one-class detection framework, which reframes speech deepfake detection as an anomaly detection task.
arXiv Detail & Related papers (2025-03-23T11:15:22Z) - DiMoDif: Discourse Modality-information Differentiation for Audio-visual Deepfake Detection and Localization [13.840950434728533]
DiMoDif is an audio-visual deepfake detection framework.<n>It exploits the inter-modality differences in machine perception of speech.<n>It temporally localizes the deepfake forgery.
arXiv Detail & Related papers (2024-11-15T13:47:33Z) - Contextual Cross-Modal Attention for Audio-Visual Deepfake Detection and Localization [3.9440964696313485]
In the digital age, the emergence of deepfakes and synthetic media presents a significant threat to societal and political integrity.
Deepfakes based on multi-modal manipulation, such as audio-visual, are more realistic and pose a greater threat.
We propose a novel multi-modal attention framework based on recurrent neural networks (RNNs) that leverages contextual information for audio-visual deepfake detection.
arXiv Detail & Related papers (2024-08-02T18:45:01Z) - Coarse-to-Fine Proposal Refinement Framework for Audio Temporal Forgery Detection and Localization [60.899082019130766]
We introduce a frame-level detection network (FDN) and a proposal refinement network (PRN) for audio temporal forgery detection and localization.
FDN aims to mine informative inconsistency cues between real and fake frames to obtain discriminative features that are beneficial for roughly indicating forgery regions.
PRN is responsible for predicting confidence scores and regression offsets to refine the coarse-grained proposals derived from the FDN.
arXiv Detail & Related papers (2024-07-23T15:07:52Z) - A unified multichannel far-field speech recognition system: combining
neural beamforming with attention based end-to-end model [14.795953417531907]
We propose a unified multichannel far-field speech recognition system that combines the neural beamforming and transformer-based Listen, Spell, Attend (LAS) speech recognition system.
The proposed method achieve 19.26% improvement when compared with a strong baseline.
arXiv Detail & Related papers (2024-01-05T07:11:13Z) - What to Remember: Self-Adaptive Continual Learning for Audio Deepfake
Detection [53.063161380423715]
Existing detection models have shown remarkable success in discriminating known deepfake audio, but struggle when encountering new attack types.
We propose a continual learning approach called Radian Weight Modification (RWM) for audio deepfake detection.
arXiv Detail & Related papers (2023-12-15T09:52:17Z) - NPVForensics: Jointing Non-critical Phonemes and Visemes for Deepfake
Detection [50.33525966541906]
Existing multimodal detection methods capture audio-visual inconsistencies to expose Deepfake videos.
We propose a novel Deepfake detection method to mine the correlation between Non-critical Phonemes and Visemes, termed NPVForensics.
Our model can be easily adapted to the downstream Deepfake datasets with fine-tuning.
arXiv Detail & Related papers (2023-06-12T06:06:05Z) - PILOT: Introducing Transformers for Probabilistic Sound Event
Localization [107.78964411642401]
This paper introduces a novel transformer-based sound event localization framework, where temporal dependencies in the received multi-channel audio signals are captured via self-attention mechanisms.
The framework is evaluated on three publicly available multi-source sound event localization datasets and compared against state-of-the-art methods in terms of localization error and event detection accuracy.
arXiv Detail & Related papers (2021-06-07T18:29:19Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z) - Looking into Your Speech: Learning Cross-modal Affinity for Audio-visual
Speech Separation [73.1652905564163]
We address the problem of separating individual speech signals from videos using audio-visual neural processing.
Most conventional approaches utilize frame-wise matching criteria to extract shared information between co-occurring audio and video.
We propose a cross-modal affinity network (CaffNet) that learns global correspondence as well as locally-varying affinities between audio and visual streams.
arXiv Detail & Related papers (2021-03-25T15:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.