Synthetic Speech Source Tracing using Metric Learning
- URL: http://arxiv.org/abs/2506.02590v1
- Date: Tue, 03 Jun 2025 08:12:15 GMT
- Title: Synthetic Speech Source Tracing using Metric Learning
- Authors: Dimitrios Koutsianos, Stavros Zacharopoulos, Yannis Panagakis, Themos Stafylakis,
- Abstract summary: This paper addresses source tracing in synthetic speech-identifying generative systems behind manipulated audio via speaker recognition-inspired pipelines.<n>We evaluate two approaches: classification-based and metric-learning.<n>The results show that ResNet achieves competitive performance with the metric learning approach, matching and even exceeding SSL-based systems.
- Score: 18.16033398335838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses source tracing in synthetic speech-identifying generative systems behind manipulated audio via speaker recognition-inspired pipelines. While prior work focuses on spoofing detection, source tracing lacks robust solutions. We evaluate two approaches: classification-based and metric-learning. We tested our methods on the MLAADv5 benchmark using ResNet and self-supervised learning (SSL) backbones. The results show that ResNet achieves competitive performance with the metric learning approach, matching and even exceeding SSL-based systems. Our work demonstrates ResNet's viability for source tracing while underscoring the need to optimize SSL representations for this task. Our work bridges speaker recognition methodologies with audio forensic challenges, offering new directions for combating synthetic media manipulation.
Related papers
- Unveiling Audio Deepfake Origins: A Deep Metric learning And Conformer Network Approach With Ensemble Fusion [14.903784311213402]
This work proposes a novel audio source tracing system combining deep metric multi-class N-pair loss with Real Emphasis and Fake Dispersion framework.<n>We evaluate our method using Frechet Distance and standard metrics, demonstrating superior performance in source tracing over the baseline system.
arXiv Detail & Related papers (2025-06-02T12:42:09Z) - Qifusion-Net: Layer-adapted Stream/Non-stream Model for End-to-End Multi-Accent Speech Recognition [1.0690007351232649]
We propose a layer-adapted fusion (LAF) model, called Qifusion-Net, which does not require any prior knowledge about the target accent.
Experiment results demonstrate that our proposed methods outperform the baseline with relative reductions of 22.1$%$ and 17.2$%$ in character error rate (CER) across multi accent test datasets.
arXiv Detail & Related papers (2024-07-03T11:35:52Z) - Mispronunciation detection using self-supervised speech representations [10.010024759851142]
We study the use of SSL models for the task of mispronunciation detection for second language learners.
We compare two downstream approaches: 1) training the model for phone recognition using native English data, and 2) training a model directly for the target task using non-native English data.
arXiv Detail & Related papers (2023-07-30T21:20:58Z) - A Vector Quantized Approach for Text to Speech Synthesis on Real-World
Spontaneous Speech [94.64927912924087]
We train TTS systems using real-world speech from YouTube and podcasts.
Recent Text-to-Speech architecture is designed for multiple code generation and monotonic alignment.
We show thatRecent Text-to-Speech architecture outperforms existing TTS systems in several objective and subjective measures.
arXiv Detail & Related papers (2023-02-08T17:34:32Z) - Self-Supervised Learning for Speech Enhancement through Synthesis [5.924928860260821]
We propose a denoising vocoder (DeVo) approach, where a vocoder accepts noisy representations and learns to directly synthesize clean speech.
We demonstrate a causal version capable of running on streaming audio with 10ms latency and minimal performance degradation.
arXiv Detail & Related papers (2022-11-04T16:06:56Z) - SLICER: Learning universal audio representations using low-resource
self-supervised pre-training [53.06337011259031]
We present a new Self-Supervised Learning approach to pre-train encoders on unlabeled audio data.
Our primary aim is to learn audio representations that can generalize across a large variety of speech and non-speech tasks.
arXiv Detail & Related papers (2022-11-02T23:45:33Z) - Contextual-Utterance Training for Automatic Speech Recognition [65.4571135368178]
We propose a contextual-utterance training technique which makes use of the previous and future contextual utterances.
Also, we propose a dual-mode contextual-utterance training technique for streaming automatic speech recognition (ASR) systems.
The proposed technique is able to reduce both the WER and the average last token emission latency by more than 6% and 40ms relative.
arXiv Detail & Related papers (2022-10-27T08:10:44Z) - Separate What You Describe: Language-Queried Audio Source Separation [53.65665794338574]
We introduce the task of language-queried audio source separation (LASS)
LASS aims to separate a target source from an audio mixture based on a natural language query of the target source.
We propose LASS-Net, an end-to-end neural network that is learned to jointly process acoustic and linguistic information.
arXiv Detail & Related papers (2022-03-28T23:47:57Z) - Self-Supervised Learning for speech recognition with Intermediate layer
supervision [52.93758711230248]
We propose Intermediate Layer Supervision for Self-Supervised Learning (ILS-SSL)
ILS-SSL forces the model to concentrate on content information as much as possible by adding an additional SSL loss on the intermediate layers.
Experiments on LibriSpeech test-other set show that our method outperforms HuBERT significantly.
arXiv Detail & Related papers (2021-12-16T10:45:05Z) - StutterNet: Stuttering Detection Using Time Delay Neural Network [9.726119468893721]
This paper introduce StutterNet, a novel deep learning based stuttering detection system.
We use a time-delay neural network (TDNN) suitable for capturing contextual aspects of the disfluent utterances.
Our method achieves promising results and outperforms the state-of-the-art residual neural network based method.
arXiv Detail & Related papers (2021-05-12T11:36:01Z) - LeBenchmark: A Reproducible Framework for Assessing Self-Supervised
Representation Learning from Speech [63.84741259993937]
Self-Supervised Learning (SSL) using huge unlabeled data has been successfully explored for image and natural language processing.
Recent works also investigated SSL from speech.
We propose LeBenchmark: a reproducible framework for assessing SSL from speech.
arXiv Detail & Related papers (2021-04-23T08:27:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.