論文の概要: The Unified Cognitive Consciousness Theory for Language Models: Anchoring Semantics, Thresholds of Activation, and Emergent Reasoning
- arxiv url: http://arxiv.org/abs/2506.02139v3
- Date: Tue, 22 Jul 2025 13:57:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 15:16:11.450278
- Title: The Unified Cognitive Consciousness Theory for Language Models: Anchoring Semantics, Thresholds of Activation, and Emergent Reasoning
- Title(参考訳): 言語モデルのための統一認知意識理論:意味論、アクティベーションの閾値、創発的推論
- Authors: Edward Y. Chang, Zeyneb N. Kaya, Ethan Chang,
- Abstract要約: 大規模言語モデル(LLM)は潜在パターンの膨大なリポジトリであるが、構造化されたガイダンスがなければ、明確な推論、セマンティックグラウンド、ゴール指向インテリジェンスが欠如している。
統一認知意識理論(UCCT: Unified Cognitive Consciousness Theory)は、LCMを外部メカニズム、少数ショットプロンプト、RAG、微調整、マルチエージェント推論を必要とする無意識の基質として再解釈する統一モデルである。
- 参考スコア(独自算出の注目度): 2.0800882594868293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are vast repositories of latent patterns, but without structured guidance, they lack explicit reasoning, semantic grounding, and goal-directed intelligence. We propose Unified Cognitive Consciousness Theory (UCCT), a unified model that reinterprets LLMs as unconscious substrates requiring external mechanisms, few-shot prompting, RAG, fine-tuning, and multi-agent reasoning, to semantically anchor latent representations. UCCT formalizes this anchoring process through a Bayesian formulation, revealing a threshold-crossing dynamic characterized by 1/sqrt(n) scaling that explains the sudden capability transitions observed across diverse tasks. The theory unifies previously disparate techniques, few-shot prompting, RAG, fine-tuning, and multi-agent reasoning, as special cases of a general anchoring architecture. Through case studies in simple math, visual recognition, and structured debate tasks, we confirm the predictive power of UCCT. Furthermore, our experiment in arithmetic in three numeral systems validates the theories of UCCT. Rather than treating intelligence as an intrinsic property of LLMs, UCCT demonstrates that LLMs are merely unconscious pattern repositories with no inherent intelligence. Intelligence emerges only when external anchoring mechanisms assign target semantics to these latent patterns, transforming unconscious representations into conscious, goal-directed capabilities.
- Abstract(参考訳): 大規模言語モデル(LLM)は潜在パターンの膨大なリポジトリであるが、構造化されたガイダンスがなければ、明確な推論、セマンティックグラウンド、ゴール指向インテリジェンスが欠如している。
我々は,LLMを外部機構,少数ショットプロンプト,RAG,微調整,マルチエージェント推論を必要とする無意識の基質として再解釈する統一モデルUCCTを提案する。
UCCTはこのアンカーリング過程をベイズ式で定式化し、1/sqrt(n)スケーリングによって特徴付けられるしきい値交差のダイナミクスを明らかにし、様々なタスクで観察される突然の能力遷移を説明する。
この理論は、一般的なアンカーアーキテクチャの特別な場合として、以前は異なっていたテクニック、少数ショットプロンプト、RAG、微調整、マルチエージェント推論を統一する。
簡単な数学、視覚認識、構造化された議論タスクのケーススタディを通じて、UCCTの予測能力を確認する。
さらに,3つの数系における算術実験はUCCTの理論を検証している。
UCCTは、インテリジェンスをLLMの本質的な性質として扱うのではなく、LLMが単なる無意識のパターンリポジトリであり、固有のインテリジェンスを持たないことを示した。
インテリジェンスは、外部アンカー機構がこれらの潜在パターンにターゲットセマンティクスを割り当て、無意識の表現を意識的でゴール指向の能力に変換するときにのみ現れる。
関連論文リスト
- Thinking with Nothinking Calibration: A New In-Context Learning Paradigm in Reasoning Large Language Models [23.642200042199484]
我々は、大規模言語モデル(RLLM)を推論するための文脈内学習(ICL)パラダイムとして、思考を伴う思考(JointThinking)を提案する。
提案手法は,思考モードと思考モードの2つの回答を並列に生成する。
JointThinkingは、数発のチェーン・オブ・シークレット・ロバスト性(CoT)と、回答の改善による多数決を著しく上回っている。
論文 参考訳(メタデータ) (2025-08-05T12:09:55Z) - CTRLS: Chain-of-Thought Reasoning via Latent State-Transition [57.51370433303236]
チェーン・オブ・シント(CoT)推論は、大規模な言語モデルで複雑な問題を解釈可能な中間ステップに分解することを可能にする。
我々は,遅延状態遷移を伴うマルコフ決定プロセス(MDP)としてCoT推論を定式化するフレームワークであるgroundingSを紹介する。
我々は、ベンチマーク推論タスクにおける推論精度、多様性、探索効率の改善を示す。
論文 参考訳(メタデータ) (2025-07-10T21:32:18Z) - A Survey on Latent Reasoning [100.54120559169735]
大きな言語モデル(LLM)は印象的な推論機能を示している。
中間ステップを言語化するCoT推論は、モデルの表現帯域幅を制限する。
潜在的推論は、モデルの連続的な隠れ状態に完全にマルチステップの推論を実行することで、このボトルネックに対処する。
論文 参考訳(メタデータ) (2025-07-08T17:29:07Z) - Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing [62.447497430479174]
空間における推論への描画は、視覚空間における基本的な描画操作を通じてLVLMを推論できる新しいパラダイムである。
我々のモデルはVILASRと呼ばれ、様々な空間推論ベンチマークで既存の手法より一貫して優れています。
論文 参考訳(メタデータ) (2025-06-11T17:41:50Z) - WHEN TO ACT, WHEN TO WAIT: Modeling Structural Trajectories for Intent Triggerability in Task-Oriented Dialogue [13.925217613823264]
タスク指向対話システムは、ユーザ発話が意味的に完全であるように見えるが、適切なシステムアクションに必要な構造情報がない場合、しばしば困難に直面する。
我々は、UserLLMとAgentLLMの対話を通して非対称情報ダイナミクスをモデル化するフレームワークSTORMを提案する。
コントリビューションには,(1)対話システムにおける非対称情報処理の形式化,(2)協調理解の進化をモデル化する意図形成,(3)タスクパフォーマンスとともに内部認知改善を測定する評価指標などが含まれている。
論文 参考訳(メタデータ) (2025-06-02T17:11:10Z) - A Closer Look at Bias and Chain-of-Thought Faithfulness of Large (Vision) Language Models [53.18562650350898]
思考の連鎖(CoT)推論は、大きな言語モデルの性能を高める。
大規模視覚言語モデルにおけるCoT忠実度に関する最初の総合的研究について述べる。
論文 参考訳(メタデータ) (2025-05-29T18:55:05Z) - Procedural Memory Is Not All You Need: Bridging Cognitive Gaps in LLM-Based Agents [3.376269351435396]
大規模言語モデル(LLM)は人工知能(AI)における画期的な業績を表す
本稿では,LLMは手続き記憶に依存しているため,基本的に制約を受ける。
認知機能を分離するモジュラーアーキテクチャを採用することで、狭義の手続き的専門知識と現実の問題解決に必要な適応知性とのギャップを埋めることができます。
論文 参考訳(メタデータ) (2025-05-06T11:18:34Z) - JTCSE: Joint Tensor-Modulus Constraints and Cross-Attention for Unsupervised Contrastive Learning of Sentence Embeddings [5.152575977825381]
我々は,新しい textbfJoint textbfTensor representation modulus constraint と textbfCross-attention unsupervised contrastive learning textbfSentence textbfEmbedding representation framework JTCSE を提案する。
論文 参考訳(メタデータ) (2025-05-05T05:09:21Z) - Fence Theorem: Towards Dual-Objective Semantic-Structure Isolation in Preprocessing Phase for 3D Anomaly Detection [32.44179060918441]
Fence Theoremは、前処理を二重目的意味的アイソレータとして定式化する。
Patch3Dは、Patch-CuttingとPatch-Matchingモジュールで構成され、セマンティック空間を分割し、類似のモジュールを統合する。
Anomaly-ShapeNetとReal3D-ADを異なる設定で実験した結果、前処理におけるよりきめ細かなセマンティックアライメントにより、ポイントレベルのAD精度が向上することが示された。
論文 参考訳(メタデータ) (2025-03-03T01:58:11Z) - The Geometry of Refusal in Large Language Models: Concept Cones and Representational Independence [57.57786477441956]
以前の研究は、モデルのアクティベーション空間における1つの拒絶方向が、LCMが要求を拒否するかどうかを決定することを示唆している。
本稿では,表現工学における勾配に基づく新しい手法を提案し,それを用いて拒絶方向を同定する。
LLMの拒絶機構は複雑な空間構造によって制御され、機能的に独立な方向を識別する。
論文 参考訳(メタデータ) (2025-02-24T18:52:59Z) - Tokens, the oft-overlooked appetizer: Large language models, the distributional hypothesis, and meaning [31.632816425798108]
トークン化は多くの言語モデルの現在のアーキテクチャにおいて必要なコンポーネントである。
トークンと事前学習がバイアスやその他の望ましくないコンテンツのバックドアとして機能するかについて議論する。
トークン化アルゴリズムの目的関数が大規模言語モデルの認知に影響を及ぼす証拠を中継する。
論文 参考訳(メタデータ) (2024-12-14T18:18:52Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
大規模言語モデル(LLM)は、自然言語処理タスクの幅広い領域にわたる変換的進歩を触媒している。
我々は,自己認識型誤り識別と訂正機能を備えたLLMを実現するために,textbfCLEARと呼ばれる革新的なテキストメタ認知手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T19:18:53Z) - Predictive Churn with the Set of Good Models [61.00058053669447]
本稿では,予測的不整合という2つの無関係な概念の関連性について考察する。
予測多重性(英: predictive multiplicity)は、個々のサンプルに対して矛盾する予測を生成するモデルである。
2つ目の概念である予測チャーン(英: predictive churn)は、モデル更新前後の個々の予測の違いを調べるものである。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
大規模言語モデル(LLM)は言語知能の分野を劇的に拡張した。
LLMは興味をそそるチェーン・オブ・シークレット(CoT)推論技術を活用し、答えを導き出す途中の中間ステップを定式化しなければならない。
最近の研究は、自律言語エージェントの開発を促進するためにCoT推論手法を拡張している。
論文 参考訳(メタデータ) (2023-11-20T14:30:55Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
クロスモーダル検索手法は、共通表現空間を共同学習することにより、視覚と言語モダリティの類似性関係を構築する。
しかし、この予測は、低品質なデータ、例えば、腐敗した画像、速いペースの動画、詳細でないテキストによって引き起こされるアレタリック不確実性のために、しばしば信頼性が低い。
本稿では, 原型に基づくAleatoric Uncertainity Quantification (PAU) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T09:41:19Z) - Learning a Structural Causal Model for Intuition Reasoning in
Conversation [20.243323155177766]
NLP研究の重要な側面である推論は、一般的なモデルによって適切に対処されていない。
我々は、各発話がどのように情報チャネルを受信し、活性化するかを説明する会話認知モデル(CCM)を開発した。
変分推論を利用することで、暗黙的な原因の代用を探索し、その観測不可能性の問題に対処し、証拠の低い境界を通して発話の因果表現を再構築する。
論文 参考訳(メタデータ) (2023-05-28T13:54:09Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z) - Simple Linguistic Inferences of Large Language Models (LLMs): Blind Spots and Blinds [59.71218039095155]
我々は,ほとんどの人間が自明に感じる単純な推論タスクにおいて,言語理解能力を評価する。
我々は, (i) 文法的に特定された含意, (ii) 不確実性のある明らかな副詞を持つ前提, (iii) 単調性含意を目標とする。
モデルはこれらの評価セットに対して中程度から低い性能を示す。
論文 参考訳(メタデータ) (2023-05-24T06:41:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。