From Features to Structure: Task-Aware Graph Construction for Relational and Tabular Learning with GNNs
- URL: http://arxiv.org/abs/2506.02243v1
- Date: Mon, 02 Jun 2025 20:42:53 GMT
- Title: From Features to Structure: Task-Aware Graph Construction for Relational and Tabular Learning with GNNs
- Authors: Tamara Cucumides, Floris Geerts,
- Abstract summary: We introduce auGraph, a unified framework for task-aware graph augmentation.<n> auGraph enhances base graph structures by selectively promoting attributes into nodes.<n>It preserves the original data schema while injecting task-relevant structural signal.
- Score: 6.0757501646966965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tabular and relational data remain the most ubiquitous formats in real-world machine learning applications, spanning domains from finance to healthcare. Although both formats offer structured representations, they pose distinct challenges for modern deep learning methods, which typically assume flat, feature-aligned inputs. Graph Neural Networks (GNNs) have emerged as a promising solution by capturing structural dependencies within and between tables. However, existing GNN-based approaches often rely on rigid, schema-derived graphs -- such as those based on primary-foreign key links -- thereby underutilizing rich, predictive signals in non key attributes. In this work, we introduce auGraph, a unified framework for task-aware graph augmentation that applies to both tabular and relational data. auGraph enhances base graph structures by selectively promoting attributes into nodes, guided by scoring functions that quantify their relevance to the downstream prediction task. This augmentation preserves the original data schema while injecting task-relevant structural signal. Empirically, auGraph outperforms schema-based and heuristic graph construction methods by producing graphs that better support learning for relational and tabular prediction tasks.
Related papers
- Unsupervised Graph Clustering with Deep Structural Entropy [25.38926876388394]
DeSE is a novel unsupervised graph clustering framework incorporating Deep Structural Entropy.<n>It enhances the original graph with quantified structural information and deep neural networks to form clusters.<n>Our clustering assignment method learns node embeddings and a soft assignment matrix to cluster on the enhanced graph.
arXiv Detail & Related papers (2025-05-20T07:38:06Z) - Beyond Message Passing: Neural Graph Pattern Machine [50.78679002846741]
We introduce the Neural Graph Pattern Machine (GPM), a novel framework that bypasses message passing by learning directly from graph substructures.<n>GPM efficiently extracts, encodes, and prioritizes task-relevant graph patterns, offering greater expressivity and improved ability to capture long-range dependencies.
arXiv Detail & Related papers (2025-01-30T20:37:47Z) - Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees [50.78679002846741]
We propose a novel approach to cross-task generalization in graphs via task-trees.<n>We show that pretraining a graph neural network (GNN) on diverse task-trees with a reconstruction objective induces transferable knowledge.<n>This enables efficient adaptation to downstream tasks with minimal fine-tuning.
arXiv Detail & Related papers (2024-12-21T02:07:43Z) - RAGraph: A General Retrieval-Augmented Graph Learning Framework [35.25522856244149]
We introduce a novel framework called General Retrieval-Augmented Graph Learning (RAGraph)<n>RAGraph brings external graph data into the general graph foundation model to improve model generalization on unseen scenarios.<n>During inference, the RAGraph adeptly retrieves similar toy graphs based on key similarities in downstream tasks.
arXiv Detail & Related papers (2024-10-31T12:05:21Z) - GraphEdit: Large Language Models for Graph Structure Learning [14.16155596597421]
Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data.<n>Existing GSL methods heavily depend on explicit graph structural information as supervision signals.<n>We propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data.
arXiv Detail & Related papers (2024-02-23T08:29:42Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
Graph Neural Networks (GNNs) have evolved to understand graph structures.
To enhance robustness, self-supervised learning (SSL) has become a vital tool for data augmentation.
Our research tackles this by advancing graph model generalization in zero-shot learning environments.
arXiv Detail & Related papers (2023-10-19T06:17:46Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
Graph structure learning allows refining the input graph by adding missing links and removing spurious connections.
Previous endeavors in graph structure learning have predominantly centered around supervised settings.
We propose a novel method called textbfhomophily-enhanced structure textbflearning for graph clustering (HoLe)
arXiv Detail & Related papers (2023-08-10T02:53:30Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical
Graph Representation Learning [74.90535111881358]
We propose a new interpretable graph pooling framework - CommPOOL.
It can capture and preserve the hierarchical community structure of graphs in the graph representation learning process.
CommPOOL is a general and flexible framework for hierarchical graph representation learning.
arXiv Detail & Related papers (2020-12-10T21:14:18Z) - Learning Graph Structure With A Finite-State Automaton Layer [31.028101360041227]
We study the problem of learning to derive abstract relations from the intrinsic graph structure.
We show how to learn these relations end-to-end by relaxing the problem into learning finite-state automata policies.
We demonstrate that this layer can find shortcuts in grid-world graphs and reproduce simple static analyses on Python programs.
arXiv Detail & Related papers (2020-07-09T17:01:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.