Human Heterogeneity Invariant Stress Sensing
- URL: http://arxiv.org/abs/2506.02256v1
- Date: Mon, 02 Jun 2025 21:00:00 GMT
- Title: Human Heterogeneity Invariant Stress Sensing
- Authors: Yi Xiao, Harshit Sharma, Sawinder Kaur, Dessa Bergen-Cico, Asif Salekin,
- Abstract summary: Stress affects physical and mental health, and wearable devices have been widely used to detect daily stress through physiological signals.<n>We present Human Heterogeneity Invariant Stress Sensing (HHISS), a domain generalization approach to find consistent patterns in stress signals.<n> HHISS helps the model perform more accurately across new people, environments, and stress types not seen during training.
- Score: 8.045902630836604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stress affects physical and mental health, and wearable devices have been widely used to detect daily stress through physiological signals. However, these signals vary due to factors such as individual differences and health conditions, making generalizing machine learning models difficult. To address these challenges, we present Human Heterogeneity Invariant Stress Sensing (HHISS), a domain generalization approach designed to find consistent patterns in stress signals by removing person-specific differences. This helps the model perform more accurately across new people, environments, and stress types not seen during training. Its novelty lies in proposing a novel technique called person-wise sub-network pruning intersection to focus on shared features across individuals, alongside preventing overfitting by leveraging continuous labels while training. The study focuses especially on people with opioid use disorder (OUD)-a group where stress responses can change dramatically depending on their time of daily medication taking. Since stress often triggers cravings, a model that can adapt well to these changes could support better OUD rehabilitation and recovery. We tested HHISS on seven different stress datasets-four of which we collected ourselves and three public ones. Four are from lab setups, one from a controlled real-world setting, driving, and two are from real-world in-the-wild field datasets without any constraints. This is the first study to evaluate how well a stress detection model works across such a wide range of data. Results show HHISS consistently outperformed state-of-the-art baseline methods, proving both effective and practical for real-world use. Ablation studies, empirical justifications, and runtime evaluations confirm HHISS's feasibility and scalability for mobile stress sensing in sensitive real-world applications.
Related papers
- Stressor Type Matters! -- Exploring Factors Influencing Cross-Dataset Generalizability of Physiological Stress Detection [5.304745246313982]
This study explores the generalizability of machine learning models trained on HRV features for binary stress detection.
Our findings reveal a crucial factor affecting model generalizability: stressor type.
We recommend matching the stressor type when deploying HRV-based stress models in new environments.
arXiv Detail & Related papers (2024-05-06T14:47:48Z) - Investigating the Generalizability of Physiological Characteristics of Anxiety [3.4036712573981607]
We evaluate the generalizability of physiological features that have been shown to be correlated with anxiety and stress to high-arousal emotions.
This work is the first cross-corpus evaluation across stress and arousal from ECG and EDA signals, contributing new findings about the generalizability of stress detection.
arXiv Detail & Related papers (2024-01-23T16:49:54Z) - Personalization of Stress Mobile Sensing using Self-Supervised Learning [1.7598252755538808]
Stress is widely recognized as a major contributor to a variety of health issues.
Real-time stress prediction can enable digital interventions to immediately react at the onset of stress, helping to avoid many psychological and physiological symptoms such as heart rhythm irregularities.
However, major challenges with the prediction of stress using machine learning include the subjectivity and sparseness of the labels, a large feature space, relatively few labels, and a complex nonlinear and subjective relationship between the features and outcomes.
arXiv Detail & Related papers (2023-08-04T22:26:33Z) - Employing Multimodal Machine Learning for Stress Detection [8.430502131775722]
Mental wellness is one of the most neglected but crucial aspects of today's world.
In this work, a multimodal AI-based framework is proposed to monitor a person's working behavior and stress levels.
arXiv Detail & Related papers (2023-06-15T14:34:16Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
People with chronic pain unconsciously adapt specific body movements to protect themselves from injury or additional pain.
Because there is no dedicated benchmark database to analyse this correlation, we considered one of the specific circumstances that potentially influence a person's biometrics during daily activities.
We proposed a sparsely-connected recurrent neural networks (s-RNNs) ensemble with the gated recurrent unit (GRU) that incorporates multiple autoencoders.
We conducted several experiments which indicate that the proposed method outperforms the state-of-the-art approaches in classifying both pain level and pain-related behaviour.
arXiv Detail & Related papers (2022-12-20T12:56:28Z) - DMAP: a Distributed Morphological Attention Policy for Learning to
Locomote with a Changing Body [126.52031472297413]
We introduce DMAP, a biologically-inspired, attention-based policy network architecture.
We show that a control policy based on the proprioceptive state performs poorly with highly variable body configurations.
DMAP can be trained end-to-end in all the considered environments, overall matching or surpassing the performance of an oracle agent.
arXiv Detail & Related papers (2022-09-28T16:45:35Z) - DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain
Medical Images [56.72015587067494]
We propose a novel dynamic learning rate adjustment method for test-time adaptation, called DLTTA.
Our method achieves effective and fast test-time adaptation with consistent performance improvement over current state-of-the-art test-time adaptation methods.
arXiv Detail & Related papers (2022-05-27T02:34:32Z) - Personalized Stress Monitoring using Wearable Sensors in Everyday
Settings [9.621481727547215]
We explore objective prediction of stress levels in everyday settings based on heart rate (HR) and heart rate variability (HRV)
We present a layered system architecture for personalized stress monitoring that supports a tunable collection of data samples for labeling, and present a method for selecting informative samples from the stream of real-time data for labeling.
arXiv Detail & Related papers (2021-07-31T04:15:15Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - Detecting Rewards Deterioration in Episodic Reinforcement Learning [63.49923393311052]
In many RL applications, once training ends, it is vital to detect any deterioration in the agent performance as soon as possible.
We consider an episodic framework, where the rewards within each episode are not independent, nor identically-distributed, nor Markov.
We define the mean-shift in a way corresponding to deterioration of a temporal signal (such as the rewards), and derive a test for this problem with optimal statistical power.
arXiv Detail & Related papers (2020-10-22T12:45:55Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.