MoCA: Multi-modal Cross-masked Autoencoder for Digital Health Measurements
- URL: http://arxiv.org/abs/2506.02260v1
- Date: Mon, 02 Jun 2025 21:07:25 GMT
- Title: MoCA: Multi-modal Cross-masked Autoencoder for Digital Health Measurements
- Authors: Howon Ryu, Yuliang Chen, Yacun Wang, Andrea Z. LaCroix, Chongzhi Di, Loki Natarajan, Yu Wang, Jingjing Zou,
- Abstract summary: We propose a self-supervised learning framework called Multi-modal Cross-masked Autoencoder (MoCA)<n>We provide theoretical guarantees to support the effectiveness of the cross-modality masking scheme in MoCA.<n>This work highlights the transformative potential of self-supervised learning in digital health and multi-modal data.
- Score: 3.3531176020495046
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The growing prevalence of digital health technologies has led to the generation of complex multi-modal data, such as physical activity measurements simultaneously collected from various sensors of mobile and wearable devices. These data hold immense potential for advancing health studies, but current methods predominantly rely on supervised learning, requiring extensive labeled datasets that are often expensive or impractical to obtain, especially in clinical studies. To address this limitation, we propose a self-supervised learning framework called Multi-modal Cross-masked Autoencoder (MoCA) that leverages cross-modality masking and the Transformer autoencoder architecture to utilize both temporal correlations within modalities and cross-modal correlations between data streams. We also provide theoretical guarantees to support the effectiveness of the cross-modality masking scheme in MoCA. Comprehensive experiments and ablation studies demonstrate that our method outperforms existing approaches in both reconstruction and downstream tasks. We release open-source code for data processing, pre-training, and downstream tasks in the supplementary materials. This work highlights the transformative potential of self-supervised learning in digital health and multi-modal data.
Related papers
- Continual Multimodal Contrastive Learning [70.60542106731813]
Multimodal contrastive learning (MCL) advances in aligning different modalities and generating multimodal representations in a joint space.<n>However, a critical yet often overlooked challenge remains: multimodal data is rarely collected in a single process, and training from scratch is computationally expensive.<n>In this paper, we formulate CMCL through two specialized principles of stability and plasticity.<n>We theoretically derive a novel optimization-based method, which projects updated gradients from dual sides onto subspaces where any gradient is prevented from interfering with the previously learned knowledge.
arXiv Detail & Related papers (2025-03-19T07:57:08Z) - MIND: Modality-Informed Knowledge Distillation Framework for Multimodal Clinical Prediction Tasks [50.98856172702256]
We propose the Modality-INformed knowledge Distillation (MIND) framework, a multimodal model compression approach.<n>MIND transfers knowledge from ensembles of pre-trained deep neural networks of varying sizes into a smaller multimodal student.<n>We evaluate MIND on binary and multilabel clinical prediction tasks using time series data and chest X-ray images.
arXiv Detail & Related papers (2025-02-03T08:50:00Z) - Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
Development of a robust deep-learning model for retinal disease diagnosis requires a substantial dataset for training.
The capacity to generalize effectively on smaller datasets remains a persistent challenge.
We've combined a wide range of data sources to improve performance and generalization to new data.
arXiv Detail & Related papers (2024-09-17T17:22:35Z) - Towards Precision Healthcare: Robust Fusion of Time Series and Image Data [8.579651833717763]
We introduce a new method that uses two separate encoders, one for each type of data, allowing the model to understand complex patterns in both visual and time-based information.
We also deal with imbalanced datasets and use an uncertainty loss function, yielding improved results.
Our experiments show that our method is effective in improving multimodal deep learning for clinical applications.
arXiv Detail & Related papers (2024-05-24T11:18:13Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Fus-MAE: A cross-attention-based data fusion approach for Masked Autoencoders in remote sensing [5.070981175240306]
Fus-MAE is a self-supervised learning framework based on masked autoencoders.<n>Our empirical findings demonstrate that Fus-MAE can effectively compete with contrastive learning strategies tailored for SAR-optical data fusion.
arXiv Detail & Related papers (2024-01-05T11:36:21Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
This paper presents the Hybrid Early-fusion Attention Learning Network (HEALNet), a flexible multimodal fusion architecture.
We conduct multimodal survival analysis on Whole Slide Images and Multi-omic data on four cancer datasets from The Cancer Genome Atlas (TCGA)
HEALNet achieves state-of-the-art performance compared to other end-to-end trained fusion models.
arXiv Detail & Related papers (2023-11-15T17:06:26Z) - Cross-modal Orthogonal High-rank Augmentation for RGB-Event
Transformer-trackers [58.802352477207094]
We explore the great potential of a pre-trained vision Transformer (ViT) to bridge the vast distribution gap between two modalities.
We propose a mask modeling strategy that randomly masks a specific modality of some tokens to enforce the interaction between tokens from different modalities interacting proactively.
Experiments demonstrate that our plug-and-play training augmentation techniques can significantly boost state-of-the-art one-stream and two trackersstream to a large extent in terms of both tracking precision and success rate.
arXiv Detail & Related papers (2023-07-09T08:58:47Z) - Continual Multimodal Knowledge Graph Construction [62.77243705682985]
Current Multimodal Knowledge Graph Construction (MKGC) models struggle with the real-world dynamism of continuously emerging entities and relations.
This study introduces benchmarks aimed at fostering the development of the continual MKGC domain.
We introduce MSPT framework, designed to surmount the shortcomings of existing MKGC approaches during multimedia data processing.
arXiv Detail & Related papers (2023-05-15T14:58:28Z) - MASTER: Multi-task Pre-trained Bottlenecked Masked Autoencoders are
Better Dense Retrievers [140.0479479231558]
In this work, we aim to unify a variety of pre-training tasks into a multi-task pre-trained model, namely MASTER.
MASTER utilizes a shared-encoder multi-decoder architecture that can construct a representation bottleneck to compress the abundant semantic information across tasks into dense vectors.
arXiv Detail & Related papers (2022-12-15T13:57:07Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.