Towards Human-like Preference Profiling in Sequential Recommendation
- URL: http://arxiv.org/abs/2506.02261v1
- Date: Mon, 02 Jun 2025 21:09:29 GMT
- Title: Towards Human-like Preference Profiling in Sequential Recommendation
- Authors: Zhongyu Ouyang, Qianlong Wen, Chunhui Zhang, Yanfang Ye, Soroush Vosoughi,
- Abstract summary: RecPO is a preference optimization framework for sequential recommendation.<n>It exploits adaptive reward margins based on inferred preference hierarchies and temporal signals.<n>It mirrors key characteristics of human decision-making: favoring timely satisfaction, maintaining coherent preferences, and exercising discernment under shifting contexts.
- Score: 42.100841285901474
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequential recommendation systems aspire to profile users by interpreting their interaction histories, echoing how humans make decisions by weighing experience, relative preference strength, and situational relevance. Yet, existing large language model (LLM)-based recommenders often fall short of mimicking the flexible, context-aware decision strategies humans exhibit, neglecting the structured, dynamic, and context-aware mechanisms fundamental to human behaviors. To bridge this gap, we propose RecPO, a preference optimization framework that models structured feedback and contextual delay to emulate human-like prioritization in sequential recommendation RecPO exploits adaptive reward margins based on inferred preference hierarchies and temporal signals, enabling the model to favor immediately relevant items and to distinguish between varying degrees of preference and aversion. Extensive experiments across five real-world datasets demonstrate that RecPO not only yields performance gains over state-of-the-art baselines, but also mirrors key characteristics of human decision-making: favoring timely satisfaction, maintaining coherent preferences, and exercising discernment under shifting contexts.
Related papers
- Multi-Level Aware Preference Learning: Enhancing RLHF for Complex Multi-Instruction Tasks [81.44256822500257]
RLHF has emerged as a predominant approach for aligning artificial intelligence systems with human preferences.<n> RLHF exhibits insufficient compliance capabilities when confronted with complex multi-instruction tasks.<n>We propose a novel Multi-level Aware Preference Learning (MAPL) framework, capable of enhancing multi-instruction capabilities.
arXiv Detail & Related papers (2025-05-19T08:33:11Z) - Integrating Response Time and Attention Duration in Bayesian Preference Learning for Multiple Criteria Decision Aiding [2.9457161327910693]
We introduce a multiple criteria Bayesian preference learning framework incorporating behavioral cues for decision aiding.<n>The framework integrates pairwise comparisons, response time, and attention duration to deepen insights into decision-making processes.
arXiv Detail & Related papers (2025-04-21T08:01:44Z) - A Survey of Direct Preference Optimization [103.59317151002693]
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities.<n>Their alignment with human values remains critical for ensuring helpful and harmless deployments.<n>Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative.
arXiv Detail & Related papers (2025-03-12T08:45:15Z) - PILAF: Optimal Human Preference Sampling for Reward Modeling [14.336058926701432]
We propose Policy-Interpolated Learning for Aligned Feedback (PILAF), a novel response sampling strategy for preference labeling.<n>PILAF explicitly aligns preference learning with maximizing the underlying oracle reward.
arXiv Detail & Related papers (2025-02-06T18:09:00Z) - Reason4Rec: Large Language Models for Recommendation with Deliberative User Preference Alignment [69.11529841118671]
We propose a new Deliberative Recommendation task, which incorporates explicit reasoning about user preferences as an additional alignment goal.<n>We then introduce the Reasoning-powered Recommender framework for deliberative user preference alignment.
arXiv Detail & Related papers (2025-02-04T07:17:54Z) - Recommendation and Temptation [3.734925590025741]
We propose a novel recommender design that explicitly models the tension between enrichment and temptation.<n>Our work represents a paradigm shift toward more nuanced and user-centric recommender design.
arXiv Detail & Related papers (2024-12-13T22:44:22Z) - Aligning Language Models Using Follow-up Likelihood as Reward Signal [40.388526412214276]
We propose using the likelihood of follow-up utterances as rewards to differentiate preferred responses from less favored ones.<n>Our proposed reward mechanism, Follow-up Likelihood as Reward" (FLR), matches the performance of strong reward models trained on large-scale human or GPT-4 annotated data.
arXiv Detail & Related papers (2024-09-20T23:47:25Z) - TSO: Self-Training with Scaled Preference Optimization [14.3799656174528]
We propose TSO, a framework for preference optimization that conducts self-training preference learning without training an additional reward model.
TSO enhances the diversity of responses by constructing a model matrix and incorporating human preference responses.
Experimental results demonstrate that TSO outperforms existing mainstream methods on various alignment evaluation benchmarks.
arXiv Detail & Related papers (2024-08-31T05:37:01Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.<n>We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.<n>We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
We propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time.
Specifically, we leverage a discriminator to detect recommendations violating user historical preference.
Our proposed framework is general and is further extended to the task of constrained text generation.
arXiv Detail & Related papers (2020-05-04T16:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.