論文の概要: LAM SIMULATOR: Advancing Data Generation for Large Action Model Training via Online Exploration and Trajectory Feedback
- arxiv url: http://arxiv.org/abs/2506.02298v1
- Date: Mon, 02 Jun 2025 22:36:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:35.102915
- Title: LAM SIMULATOR: Advancing Data Generation for Large Action Model Training via Online Exploration and Trajectory Feedback
- Title(参考訳): LAM SIMULATOR:オンライン探索と軌道フィードバックによる大規模行動モデル学習のためのデータ生成の改善
- Authors: Thai Hoang, Kung-Hsiang Huang, Shirley Kokane, Jianguo Zhang, Zuxin Liu, Ming Zhu, Jake Grigsby, Tian Lan, Michael S Ryoo, Chien-Sheng Wu, Shelby Heinecke, Huan Wang, Silvio Savarese, Caiming Xiong, Juan Carlos Niebles,
- Abstract要約: AIエージェントのための大規模アクションモデル(LAM)は、素晴らしいポテンシャルを提供するが、高品質なトレーニングデータを必要とするため、課題に直面している。
LAM SIMULATORは,高品質なフィードバックによるエージェントタスクのオンライン探索を目的とした総合的なフレームワークである。
本フレームワークは,動的タスククエリジェネレータ,広範囲なツールコレクション,および大規模言語モデル(LLM)エージェントがツールを呼び出し,リアルタイムフィードバックを受信できる対話型環境を備えている。
- 参考スコア(独自算出の注目度): 121.78866929908871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Action Models (LAMs) for AI Agents offer incredible potential but face challenges due to the need for high-quality training data, especially for multi-steps tasks that involve planning, executing tool calls, and responding to feedback. To address these issues, we present LAM SIMULATOR, a comprehensive framework designed for online exploration of agentic tasks with high-quality feedback. Our framework features a dynamic task query generator, an extensive collection of tools, and an interactive environment where Large Language Model (LLM) Agents can call tools and receive real-time feedback. This setup enables LLM Agents to explore and solve tasks autonomously, facilitating the discovery of multiple approaches to tackle any given task. The resulting action trajectory data are then used to create high-quality training datasets for LAMs. Our experiments on popular agentic benchmarks, ToolBench and CRMArena, highlight the effectiveness of LAM SIMULATOR: models trained with self-generated datasets using our framework achieve significant performance gains, up to a 49.3\% improvement over their original baselines. LAM SIMULATOR requires minimal human input during dataset creation, highlighting LAM SIMULATOR's efficiency and effectiveness in speeding up development of AI agents.
- Abstract(参考訳): AIエージェントのための大規模アクションモデル(LAM)は、素晴らしいポテンシャルを提供するが、高品質なトレーニングデータを必要とするため、特に計画、ツールコールの実行、フィードバックへの応答を含むマルチステップタスクのために、課題に直面している。
これらの課題に対処するために,エージェントタスクのオンライン探索と高品質なフィードバックを目的とした総合的なフレームワーク LAM SIMULATOR を提案する。
本フレームワークは,動的タスククエリジェネレータ,広範囲なツールコレクション,および大規模言語モデル(LLM)エージェントがツールを呼び出し,リアルタイムフィードバックを受信できる対話型環境を備えている。
このセットアップにより、LLMエージェントはタスクを自律的に探索し、解決することが可能になり、任意のタスクに取り組むための複数のアプローチの発見が容易になる。
結果として得られる行動軌跡データは、LAMのための高品質なトレーニングデータセットを作成するために使用される。
一般的なエージェントベンチマークであるToolBenchとCRMArenaの実験では、LAM SIMULATORの有効性を強調した。
LAM SIMULATORは、データセット作成中に最小限の人間入力を必要とし、AIエージェントの開発を高速化するLAM SIMULATORの効率性と有効性を強調している。
関連論文リスト
- LaMDAgent: An Autonomous Framework for Post-Training Pipeline Optimization via LLM Agents [3.6117068575553595]
トレーニング後の完全なパイプラインを自律的に構築し、最適化するフレームワークであるLaMDAgentを紹介します。
LaMDAgentは、ツールの使用精度を9.0ポイント向上し、命令追従機能を保持する。
従来の人間主導の探査で見落とされがちな効果的なポストトレーニング戦略を明らかにする。
論文 参考訳(メタデータ) (2025-05-28T04:30:51Z) - MaskSearch: A Universal Pre-Training Framework to Enhance Agentic Search Capability [106.35604230971396]
最近のエージェント技術の進歩により、大規模言語モデル(LLM)は、検索、計画、推論のためのツールを自律的に活用することができる。
エージェントの普遍的な検索能力を高めるために,新しい事前学習フレームワークMaskSearchを提案する。
事前学習の段階では、検索ツールを用いてマスク付きスパンを埋めるRetrieval Augmented Mask Prediction (RAMP)タスクを導入する。
その後、モデルは下流のタスクでトレーニングされ、さらなる改善が達成されます。
論文 参考訳(メタデータ) (2025-05-26T17:58:50Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
自律型大規模言語モデル(LLM)エージェントを体系的に強化し、評価し、改善するためのガイムスタイルのフレームワーク。
MLE-Dojoは、現実的なエンジニアリングシナリオを反映した、多様でオープンなMLEタスクを慎重にキュレートする。
完全に実行可能な環境は、教師付き微調整と強化学習の両方を通して包括的なエージェントトレーニングをサポートする。
論文 参考訳(メタデータ) (2025-05-12T17:35:43Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - Large Language Models Can Self-Improve At Web Agent Tasks [37.17001438055515]
大規模言語モデル(LLM)は、ゼロショットまたは少数ショットの方法でエージェントとして新しい環境をナビゲートする機能を最近デモした。
WebArena ベンチマークを用いて,LLM が長期タスクにおけるエージェントとしての性能を自己向上する方法について検討した。
自己改善手順により,WebArenaベンチマークのベースモデルよりもタスク完了率を31%向上させる。
論文 参考訳(メタデータ) (2024-05-30T17:52:36Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。