MINT: Multimodal Instruction Tuning with Multimodal Interaction Grouping
- URL: http://arxiv.org/abs/2506.02308v3
- Date: Fri, 06 Jun 2025 21:40:20 GMT
- Title: MINT: Multimodal Instruction Tuning with Multimodal Interaction Grouping
- Authors: Xiaojun Shan, Qi Cao, Xing Han, Haofei Yu, Paul Pu Liang,
- Abstract summary: We introduce MINT, a simple yet surprisingly effective task-grouping strategy based on the type of multimodal interaction.<n>We demonstrate that the proposed method greatly outperforms existing task grouping baselines for multimodal instruction tuning.
- Score: 28.653290360671175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in multimodal foundation models have achieved state-of-the-art performance across a range of tasks. These breakthroughs are largely driven by new pre-training paradigms that leverage large-scale, unlabeled multimodal data, followed by instruction fine-tuning on curated labeled datasets and high-quality prompts. While there is growing interest in scaling instruction fine-tuning to ever-larger datasets in both quantity and scale, our findings reveal that simply increasing the number of instruction-tuning tasks does not consistently yield better performance. Instead, we observe that grouping tasks by the common interactions across modalities, such as discovering redundant shared information, prioritizing modality selection with unique information, or requiring synergistic fusion to discover new information from both modalities, encourages the models to learn transferrable skills within a group while suppressing interference from mismatched tasks. To this end, we introduce MINT, a simple yet surprisingly effective task-grouping strategy based on the type of multimodal interaction. We demonstrate that the proposed method greatly outperforms existing task grouping baselines for multimodal instruction tuning, striking an effective balance between generalization and specialization.
Related papers
- Efficient Prompting for Continual Adaptation to Missing Modalities [7.782217188939437]
We formulate the dynamic missing modality problem as a continual learning task.<n>We introduce three types of prompts: modality-specific, task-aware, and task-specific prompts.<n>These prompts enable the model to learn intra-modality, inter-modality, intra-task, and inter-task features.
arXiv Detail & Related papers (2025-03-01T15:09:37Z) - One Framework to Rule Them All: Unifying Multimodal Tasks with LLM Neural-Tuning [16.96824902454355]
We propose a unified framework that concurrently handles multiple tasks and modalities.<n>In this framework, all modalities and tasks are represented as unified tokens and trained using a single, consistent approach.<n>We present a new benchmark, MMUD, which includes samples annotated with multiple task labels.<n>We demonstrate the ability to handle multiple tasks simultaneously in a streamlined and efficient manner.
arXiv Detail & Related papers (2024-08-06T07:19:51Z) - Multimodal Instruction Tuning with Conditional Mixture of LoRA [51.58020580970644]
This paper introduces a novel approach that integrates multimodal instruction tuning with Low-Rank Adaption (LoRA)<n>It innovates upon LoRA by dynamically constructing low-rank adaptation matrices tailored to the unique demands of each input instance.<n> Experimental results on various multimodal evaluation datasets indicate that MixLoRA not only outperforms the conventional LoRA with the same or even higher ranks.
arXiv Detail & Related papers (2024-02-24T20:15:31Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - Factorized Contrastive Learning: Going Beyond Multi-view Redundancy [116.25342513407173]
This paper proposes FactorCL, a new multimodal representation learning method to go beyond multi-view redundancy.
On large-scale real-world datasets, FactorCL captures both shared and unique information and achieves state-of-the-art results.
arXiv Detail & Related papers (2023-06-08T15:17:04Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
We study the challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data.
Using a precise information-theoretic definition of interactions, our key contribution is the derivation of lower and upper bounds.
We show how these theoretical results can be used to estimate multimodal model performance, guide data collection, and select appropriate multimodal models for various tasks.
arXiv Detail & Related papers (2023-06-07T15:44:53Z) - High-Modality Multimodal Transformer: Quantifying Modality & Interaction
Heterogeneity for High-Modality Representation Learning [112.51498431119616]
This paper studies efficient representation learning for high-modality scenarios involving a large set of diverse modalities.
A single model, HighMMT, scales up to 10 modalities (text, image, audio, video, sensors, proprioception, speech, time-series, sets, and tables) and 15 tasks from 5 research areas.
arXiv Detail & Related papers (2022-03-02T18:56:20Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.