InterRVOS: Interaction-aware Referring Video Object Segmentation
- URL: http://arxiv.org/abs/2506.02356v2
- Date: Wed, 04 Jun 2025 09:23:48 GMT
- Title: InterRVOS: Interaction-aware Referring Video Object Segmentation
- Authors: Woojeong Jin, Seongchan Kim, Seungryong Kim,
- Abstract summary: Referring video object segmentation aims to segment the object in a video corresponding to a given natural language expression.<n>In comprehensive video understanding, an object's role is often defined by its interactions with other entities.<n>We introduce Interaction-aware referring video object sgementation, a new task that requires segmenting both actor and target entities involved in an interaction.
- Score: 37.53744746544299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Referring video object segmentation aims to segment the object in a video corresponding to a given natural language expression. While prior works have explored various referring scenarios, including motion-centric or multi-instance expressions, most approaches still focus on localizing a single target object in isolation. However, in comprehensive video understanding, an object's role is often defined by its interactions with other entities, which are largely overlooked in existing datasets and models. In this work, we introduce Interaction-aware referring video object sgementation (InterRVOS), a new task that requires segmenting both actor and target entities involved in an interaction. Each interactoin is described through a pair of complementary expressions from different semantic perspectives, enabling fine-grained modeling of inter-object relationships. To tackle this task, we propose InterRVOS-8K, the large-scale and automatically constructed dataset containing diverse interaction-aware expressions with corresponding masks, including challenging cases such as motion-only multi-instance expressions. We also present a baseline architecture, ReVIOSa, designed to handle actor-target segmentation from a single expression, achieving strong performance in both standard and interaction-focused settings. Furthermore, we introduce an actor-target-aware evalaution setting that enables a more targeted assessment of interaction understanding. Experimental results demonstrate that our approach outperforms prior methods in modeling complex object interactions for referring video object segmentation task, establishing a strong foundation for future research in interaction-centric video understanding. Our project page is available at https://cvlab-kaist.github.io/InterRVOS.
Related papers
- Learning Video Generation for Robotic Manipulation with Collaborative Trajectory Control [72.00655365269]
We present RoboMaster, a novel framework that models inter-object dynamics through a collaborative trajectory formulation.<n>Unlike prior methods that decompose objects, our core is to decompose the interaction process into three sub-stages: pre-interaction, interaction, and post-interaction.<n>Our method outperforms existing approaches, establishing new state-of-the-art performance in trajectory-controlled video generation for robotic manipulation.
arXiv Detail & Related papers (2025-06-02T17:57:06Z) - RefCut: Interactive Segmentation with Reference Guidance [44.872055134890864]
RefCut is a reference-based interactive segmentation framework to address part ambiguity and object ambiguity.<n>Our code will be publicly available and the demo video is in https://www.lin-zheng.com/refcut.
arXiv Detail & Related papers (2025-03-22T17:14:20Z) - MMR: A Large-scale Benchmark Dataset for Multi-target and Multi-granularity Reasoning Segmentation [14.144097766150397]
We present a dataset called Multi-target and Multi-granularity Reasoning (MMR)<n>MMR comprises 194K complex and implicit instructions that consider multi-target, object-level, and part-level aspects.<n>We propose a straightforward yet effective framework for multi-target, object-level, and part-level reasoning segmentation.
arXiv Detail & Related papers (2025-03-18T04:23:09Z) - CaRe-Ego: Contact-aware Relationship Modeling for Egocentric Interactive Hand-object Segmentation [14.765419467710812]
Egocentric Interactive hand-object segmentation (EgoIHOS) is crucial for understanding human behavior in assistive systems.<n>Previous methods recognize hands and interacting objects as distinct semantic categories based solely on visual features.<n>We propose CaRe-Ego, which emphasizes the contact between hands and objects from two aspects.
arXiv Detail & Related papers (2024-07-08T03:17:10Z) - Learning from Exemplars for Interactive Image Segmentation [15.37506525730218]
We introduce novel interactive segmentation frameworks for both a single object and multiple objects in the same category.
Our model reduces users' labor by around 15%, requiring two fewer clicks to achieve target IoUs 85% and 90%.
arXiv Detail & Related papers (2024-06-17T12:38:01Z) - Training-Free Robust Interactive Video Object Segmentation [82.05906654403684]
We propose a training-free prompt tracking framework for interactive video object segmentation (I-PT)
We jointly adopt sparse points and boxes tracking, filtering out unstable points and capturing object-wise information.
Our framework has demonstrated robust zero-shot video segmentation results on popular VOS datasets.
arXiv Detail & Related papers (2024-06-08T14:25:57Z) - 1st Place Solution for MOSE Track in CVPR 2024 PVUW Workshop: Complex Video Object Segmentation [72.54357831350762]
We propose a semantic embedding video object segmentation model and use the salient features of objects as query representations.
We trained our model on a large-scale video object segmentation dataset.
Our model achieves first place (textbf84.45%) in the test set of Complex Video Object Challenge.
arXiv Detail & Related papers (2024-06-07T03:13:46Z) - Simultaneous Detection and Interaction Reasoning for Object-Centric Action Recognition [21.655278000690686]
We propose an end-to-end object-centric action recognition framework.
It simultaneously performs Detection And Interaction Reasoning in one stage.
We conduct experiments on two datasets, Something-Else and Ikea-Assembly.
arXiv Detail & Related papers (2024-04-18T05:06:12Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
We introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals.
Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars.
Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTube, SegTrackv2, and FBMS-59.
arXiv Detail & Related papers (2023-12-18T18:59:51Z) - MeViS: A Large-scale Benchmark for Video Segmentation with Motion
Expressions [93.35942025232943]
We propose a large-scale dataset called MeViS, which contains numerous motion expressions to indicate target objects in complex environments.
The goal of our benchmark is to provide a platform that enables the development of effective language-guided video segmentation algorithms.
arXiv Detail & Related papers (2023-08-16T17:58:34Z) - Position-Aware Contrastive Alignment for Referring Image Segmentation [65.16214741785633]
We present a position-aware contrastive alignment network (PCAN) to enhance the alignment of multi-modal features.
Our PCAN consists of two modules: 1) Position Aware Module (PAM), which provides position information of all objects related to natural language descriptions, and 2) Contrastive Language Understanding Module (CLUM), which enhances multi-modal alignment.
arXiv Detail & Related papers (2022-12-27T09:13:19Z) - A Deep Learning Approach to Object Affordance Segmentation [31.221897360610114]
We design an autoencoder that infers pixel-wise affordance labels in both videos and static images.
Our model surpasses the need for object labels and bounding boxes by using a soft-attention mechanism.
We show that our model achieves competitive results compared to strongly supervised methods on SOR3D-AFF.
arXiv Detail & Related papers (2020-04-18T15:34:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.