RoadFormer : Local-Global Feature Fusion for Road Surface Classification in Autonomous Driving
- URL: http://arxiv.org/abs/2506.02358v1
- Date: Tue, 03 Jun 2025 01:23:19 GMT
- Title: RoadFormer : Local-Global Feature Fusion for Road Surface Classification in Autonomous Driving
- Authors: Tianze Wang, Zhang Zhang, Chao Sun,
- Abstract summary: The classification of the type of road surface (RSC) aims to utilize pavement features to identify the roughness, wet and dry conditions, and material information of the road surface.<n>In autonomous driving, accurate RSC allows vehicles to better understand the road environment, adjust driving strategies, and ensure a safer and more efficient driving experience.<n>We propose a vision-based fine-grained RSC method for autonomous driving scenarios, which fuses local and global feature information through the stacking of convolutional and transformer modules.
- Score: 7.3210301283888315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The classification of the type of road surface (RSC) aims to utilize pavement features to identify the roughness, wet and dry conditions, and material information of the road surface. Due to its ability to effectively enhance road safety and traffic management, it has received widespread attention in recent years. In autonomous driving, accurate RSC allows vehicles to better understand the road environment, adjust driving strategies, and ensure a safer and more efficient driving experience. For a long time, vision-based RSC has been favored. However, existing visual classification methods have overlooked the exploration of fine-grained classification of pavement types (such as similar pavement textures). In this work, we propose a pure vision-based fine-grained RSC method for autonomous driving scenarios, which fuses local and global feature information through the stacking of convolutional and transformer modules. We further explore the stacking strategies of local and global feature extraction modules to find the optimal feature extraction strategy. In addition, since fine-grained tasks also face the challenge of relatively large intra-class differences and relatively small inter-class differences, we propose a Foreground-Background Module (FBM) that effectively extracts fine-grained context features of the pavement, enhancing the classification ability for complex pavements. Experiments conducted on a large-scale pavement dataset containing one million samples and a simplified dataset reorganized from this dataset achieved Top-1 classification accuracies of 92.52% and 96.50%, respectively, improving by 5.69% to 12.84% compared to SOTA methods. These results demonstrate that RoadFormer outperforms existing methods in RSC tasks, providing significant progress in improving the reliability of pavement perception in autonomous driving systems.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Efficient Data Representation for Motion Forecasting: A Scene-Specific Trajectory Set Approach [12.335528093380631]
This study introduces a novel approach for generating scene-specific trajectory sets tailored to different contexts.<n>A deterministic goal sampling algorithm identifies relevant map regions, while our Recursive In-Distribution Subsampling (RIDS) method enhances trajectory plausibility.<n>Experiments on the Argoverse 2 dataset demonstrate that our method achieves up to a 10% improvement in Driving Area Compliance.
arXiv Detail & Related papers (2024-07-30T11:06:39Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.<n>To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
Road surface reconstruction helps to enhance the analysis and prediction of vehicle responses for motion planning and control systems.
We introduce the Road Surface Reconstruction dataset, a real-world, high-resolution, and high-precision dataset collected with a specialized platform in diverse driving conditions.
It covers common road types containing approximately 16,000 pairs of stereo images, original point clouds, and ground-truth depth/disparity maps.
arXiv Detail & Related papers (2023-10-03T17:59:32Z) - R2S100K: Road-Region Segmentation Dataset For Semi-Supervised Autonomous
Driving in the Wild [11.149480965148015]
Road Region dataset (R2S100K) is a large-scale dataset and benchmark for training and evaluation of road segmentation.
R2S100K comprises 100K images extracted from a large and diverse set of video sequences covering more than 1000 KM of roadways.
We present an Efficient Data Sampling method (EDS) based self-training framework to improve learning by leveraging unlabeled data.
arXiv Detail & Related papers (2023-08-11T21:31:37Z) - Leveraging Road Area Semantic Segmentation with Auxiliary Steering Task [0.0]
We propose a CNN-based method that can leverage the steering wheel angle information to improve the road area semantic segmentation.
We demonstrate the effectiveness of the proposed approach on two challenging data sets for autonomous driving.
arXiv Detail & Related papers (2022-12-19T13:25:09Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - Model Guided Road Intersection Classification [2.9248680865344348]
This work investigates inter-section classification from RGB images using well-consolidate neural network approaches along with a method to enhance the results based on the teacher/student training paradigm.
An extensive experimental activity aimed at identifying the best input configuration and evaluating different network parameters on both the well-known KITTI dataset and the new KITTI-360 sequences shows that our method outperforms current state-of-the-art approaches on a per-frame basis and prove the effectiveness of the proposed learning scheme.
arXiv Detail & Related papers (2021-04-26T09:15:28Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z) - BoMuDANet: Unsupervised Adaptation for Visual Scene Understanding in
Unstructured Driving Environments [54.22535063244038]
We present an unsupervised adaptation approach for visual scene understanding in unstructured traffic environments.
Our method is designed for unstructured real-world scenarios with dense and heterogeneous traffic consisting of cars, trucks, two-and three-wheelers, and pedestrians.
arXiv Detail & Related papers (2020-09-22T08:25:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.