Efficient Data Representation for Motion Forecasting: A Scene-Specific Trajectory Set Approach
- URL: http://arxiv.org/abs/2407.20732v2
- Date: Mon, 09 Dec 2024 09:50:05 GMT
- Title: Efficient Data Representation for Motion Forecasting: A Scene-Specific Trajectory Set Approach
- Authors: Abhishek Vivekanandan, J. Marius Zöllner,
- Abstract summary: This study introduces a novel approach for generating scene-specific trajectory sets tailored to different contexts.
A deterministic goal sampling algorithm identifies relevant map regions, while our Recursive In-Distribution Subsampling (RIDS) method enhances trajectory plausibility.
Experiments on the Argoverse 2 dataset demonstrate that our method achieves up to a 10% improvement in Driving Area Compliance.
- Score: 12.335528093380631
- License:
- Abstract: Representing diverse and plausible future trajectories is critical for motion forecasting in autonomous driving. However, efficiently capturing these trajectories in a compact set remains challenging. This study introduces a novel approach for generating scene-specific trajectory sets tailored to different contexts, such as intersections and straight roads, by leveraging map information and actor dynamics. A deterministic goal sampling algorithm identifies relevant map regions, while our Recursive In-Distribution Subsampling (RIDS) method enhances trajectory plausibility by condensing redundant representations. Experiments on the Argoverse 2 dataset demonstrate that our method achieves up to a 10% improvement in Driving Area Compliance (DAC) compared to baseline methods while maintaining competitive displacement errors. Our work highlights the benefits of mining such scene-aware trajectory sets and how they could capture the complex and heterogeneous nature of actor behavior in real-world driving scenarios.
Related papers
- Controllable Diverse Sampling for Diffusion Based Motion Behavior
Forecasting [11.106812447960186]
We introduce a novel trajectory generator named Controllable Diffusion Trajectory (CDT)
CDT integrates information and social interactions into a Transformer-based conditional denoising diffusion model to guide the prediction of future trajectories.
To ensure multimodality, we incorporate behavioral tokens to direct the trajectory's modes, such as going straight, turning right or left.
arXiv Detail & Related papers (2024-02-06T13:16:54Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Learning Representative Trajectories of Dynamical Systems via
Domain-Adaptive Imitation [0.0]
We propose DATI, a deep reinforcement learning agent designed for domain-adaptive trajectory imitation.
Our experiments show that DATI outperforms baseline methods for imitation learning and optimal control in this setting.
Its generalization to a real-world scenario is shown through the discovery of abnormal motion patterns in maritime traffic.
arXiv Detail & Related papers (2023-04-19T15:53:48Z) - Self-supervised Trajectory Representation Learning with Temporal
Regularities and Travel Semantics [30.9735101687326]
Trajectory Representation Learning (TRL) is a powerful tool for spatial-temporal data analysis and management.
Existing TRL works usually treat trajectories as ordinary sequence data, while some important spatial-temporal characteristics, such as temporal regularities and travel semantics, are not fully exploited.
We propose a novel Self-supervised trajectory representation learning framework with TemporAl Regularities and Travel semantics, namely START.
arXiv Detail & Related papers (2022-11-17T13:14:47Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
We introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet)
CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement.
Experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction.
arXiv Detail & Related papers (2021-11-30T04:30:10Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - A Deep Learning Framework for Generation and Analysis of Driving
Scenario Trajectories [2.908482270923597]
We propose a unified deep learning framework for the generation and analysis of driving scenario trajectories.
We experimentally investigate the performance of the proposed framework on real-world scenario trajectories obtained from in-field data collection.
arXiv Detail & Related papers (2020-07-28T23:33:05Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Action Sequence Predictions of Vehicles in Urban Environments using Map
and Social Context [152.0714518512966]
This work studies the problem of predicting the sequence of future actions for surround vehicles in real-world driving scenarios.
The first contribution is an automatic method to convert the trajectories recorded in real-world driving scenarios to action sequences with the help of HD maps.
The second contribution lies in applying the method to the well-known traffic agent tracking and prediction dataset Argoverse, resulting in 228,000 action sequences.
The third contribution is to propose a novel action sequence prediction method by integrating past positions and velocities of the traffic agents, map information and social context into a single end-to-end trainable neural network
arXiv Detail & Related papers (2020-04-29T14:59:58Z) - Improving Movement Predictions of Traffic Actors in Bird's-Eye View
Models using GANs and Differentiable Trajectory Rasterization [12.652210024012374]
One of the most critical pieces of the self-driving puzzle is the task of predicting future movement of surrounding traffic actors.
Methods based on top-down sceneization on one side and Generative Adrial Networks (GANs) on the other have shown to be particularly successful.
In this paper we build upon these two directions and propose aversa-based conditional GAN architecture.
We evaluate the proposed method on a large-scale, real-world data set, showing that it outperforms state-of-the-art GAN-based baselines.
arXiv Detail & Related papers (2020-04-14T00:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.