Efficient Data Representation for Motion Forecasting: A Scene-Specific Trajectory Set Approach
- URL: http://arxiv.org/abs/2407.20732v2
- Date: Mon, 09 Dec 2024 09:50:05 GMT
- Title: Efficient Data Representation for Motion Forecasting: A Scene-Specific Trajectory Set Approach
- Authors: Abhishek Vivekanandan, J. Marius Zöllner,
- Abstract summary: This study introduces a novel approach for generating scene-specific trajectory sets tailored to different contexts.<n>A deterministic goal sampling algorithm identifies relevant map regions, while our Recursive In-Distribution Subsampling (RIDS) method enhances trajectory plausibility.<n>Experiments on the Argoverse 2 dataset demonstrate that our method achieves up to a 10% improvement in Driving Area Compliance.
- Score: 12.335528093380631
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Representing diverse and plausible future trajectories is critical for motion forecasting in autonomous driving. However, efficiently capturing these trajectories in a compact set remains challenging. This study introduces a novel approach for generating scene-specific trajectory sets tailored to different contexts, such as intersections and straight roads, by leveraging map information and actor dynamics. A deterministic goal sampling algorithm identifies relevant map regions, while our Recursive In-Distribution Subsampling (RIDS) method enhances trajectory plausibility by condensing redundant representations. Experiments on the Argoverse 2 dataset demonstrate that our method achieves up to a 10% improvement in Driving Area Compliance (DAC) compared to baseline methods while maintaining competitive displacement errors. Our work highlights the benefits of mining such scene-aware trajectory sets and how they could capture the complex and heterogeneous nature of actor behavior in real-world driving scenarios.
Related papers
- NLP-enabled Trajectory Map-matching in Urban Road Networks using a Transformer-based Encoder-decoder [1.3812010983144802]
This study introduces a data-driven, deep learning-based map-matching framework, formulating the task as machine translation, inspired by NLP.
A transformer-based encoder-decoder model learns contextual representations of noisy GPS points to infer trajectory behavior and road structures in an end-to-end manner.
Experiments on synthetic trajectories show that this approach outperforms conventional methods by integrating contextual awareness.
arXiv Detail & Related papers (2024-04-18T18:39:23Z) - Controllable Diverse Sampling for Diffusion Based Motion Behavior
Forecasting [11.106812447960186]
We introduce a novel trajectory generator named Controllable Diffusion Trajectory (CDT)
CDT integrates information and social interactions into a Transformer-based conditional denoising diffusion model to guide the prediction of future trajectories.
To ensure multimodality, we incorporate behavioral tokens to direct the trajectory's modes, such as going straight, turning right or left.
arXiv Detail & Related papers (2024-02-06T13:16:54Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.
To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - A Diffusion-Model of Joint Interactive Navigation [14.689298253430568]
We present DJINN - a diffusion based method of generating traffic scenarios.
Our approach jointly diffuses the trajectories of all agents, conditioned on a flexible set of state observations from the past, present, or future.
We show how DJINN flexibly enables direct test-time sampling from a variety of valuable conditional distributions.
arXiv Detail & Related papers (2023-09-21T22:10:20Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Learning Representative Trajectories of Dynamical Systems via
Domain-Adaptive Imitation [0.0]
We propose DATI, a deep reinforcement learning agent designed for domain-adaptive trajectory imitation.
Our experiments show that DATI outperforms baseline methods for imitation learning and optimal control in this setting.
Its generalization to a real-world scenario is shown through the discovery of abnormal motion patterns in maritime traffic.
arXiv Detail & Related papers (2023-04-19T15:53:48Z) - Diverse Probabilistic Trajectory Forecasting with Admissibility
Constraints [19.977040198878978]
We propose a novel method for structured prediction of diverse trajectories.
We combine these two novel components with a gating operation, ensuring that the predictions are both diverse and within the drivable area.
We demonstrate on the nuScenes driving dataset the relevance of our compound approach.
arXiv Detail & Related papers (2023-02-07T13:36:27Z) - Forecasting Human Trajectory from Scene History [51.72069374835107]
We propose to forecast a person's future trajectory by learning from the implicit scene regularities.
We categorize scene history information into two types: historical group trajectory and individual-surroundings interaction.
We propose a novel framework Scene History Excavating Network (SHENet), where the scene history is leveraged in a simple yet effective approach.
arXiv Detail & Related papers (2022-10-17T03:56:02Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
We introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet)
CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement.
Experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction.
arXiv Detail & Related papers (2021-11-30T04:30:10Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - A Deep Learning Framework for Generation and Analysis of Driving
Scenario Trajectories [2.908482270923597]
We propose a unified deep learning framework for the generation and analysis of driving scenario trajectories.
We experimentally investigate the performance of the proposed framework on real-world scenario trajectories obtained from in-field data collection.
arXiv Detail & Related papers (2020-07-28T23:33:05Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Complementary Boundary Generator with Scale-Invariant Relation Modeling
for Temporal Action Localization: Submission to ActivityNet Challenge 2020 [66.4527310659592]
This report presents an overview of our solution used in the submission to ActivityNet Challenge 2020 Task 1.
We decouple the temporal action localization task into two stages (i.e. proposal generation and classification) and enrich the proposal diversity.
Our proposed scheme achieves the state-of-the-art performance on the temporal action localization task with textbf42.26 average mAP on the challenge testing set.
arXiv Detail & Related papers (2020-07-20T04:35:40Z) - Action Sequence Predictions of Vehicles in Urban Environments using Map
and Social Context [152.0714518512966]
This work studies the problem of predicting the sequence of future actions for surround vehicles in real-world driving scenarios.
The first contribution is an automatic method to convert the trajectories recorded in real-world driving scenarios to action sequences with the help of HD maps.
The second contribution lies in applying the method to the well-known traffic agent tracking and prediction dataset Argoverse, resulting in 228,000 action sequences.
The third contribution is to propose a novel action sequence prediction method by integrating past positions and velocities of the traffic agents, map information and social context into a single end-to-end trainable neural network
arXiv Detail & Related papers (2020-04-29T14:59:58Z) - Improving Movement Predictions of Traffic Actors in Bird's-Eye View
Models using GANs and Differentiable Trajectory Rasterization [12.652210024012374]
One of the most critical pieces of the self-driving puzzle is the task of predicting future movement of surrounding traffic actors.
Methods based on top-down sceneization on one side and Generative Adrial Networks (GANs) on the other have shown to be particularly successful.
In this paper we build upon these two directions and propose aversa-based conditional GAN architecture.
We evaluate the proposed method on a large-scale, real-world data set, showing that it outperforms state-of-the-art GAN-based baselines.
arXiv Detail & Related papers (2020-04-14T00:41:17Z) - MCENET: Multi-Context Encoder Network for Homogeneous Agent Trajectory
Prediction in Mixed Traffic [35.22312783822563]
Trajectory prediction in urban mixedtraffic zones is critical for many intelligent transportation systems.
We propose an approach named Multi-Context Network (MCENET) that is trained by encoding both past and future scene context.
In inference time, we combine the past context and motion information of the target agent with samplings of the latent variables to predict multiple realistic trajectories.
arXiv Detail & Related papers (2020-02-14T11:04:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.