AERO: A Redirection-Based Optimization Framework Inspired by Judo for Robust Probabilistic Forecasting
- URL: http://arxiv.org/abs/2506.02415v1
- Date: Tue, 03 Jun 2025 04:02:20 GMT
- Title: AERO: A Redirection-Based Optimization Framework Inspired by Judo for Robust Probabilistic Forecasting
- Authors: Karthikeyan Vaiapury,
- Abstract summary: We introduce AERO (Adversarial Energy-based Redirection Optimization), a novel framework inspired by the redirection principle in Judo.<n>Our findings highlight AERO as a compelling new direction in the theoretical and practical landscape of optimization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Optimization remains a fundamental pillar of machine learning, yet existing methods often struggle to maintain stability and adaptability in dynamic, non linear systems, especially under uncertainty. We introduce AERO (Adversarial Energy-based Redirection Optimization), a novel framework inspired by the redirection principle in Judo, where external disturbances are leveraged rather than resisted. AERO reimagines optimization as a redirection process guided by 15 interrelated axioms encompassing adversarial correction, energy conservation, and disturbance-aware learning. By projecting gradients, integrating uncertainty driven dynamics, and managing learning energy, AERO offers a principled approach to stable and robust model updates. Applied to probabilistic solar energy forecasting, AERO demonstrates substantial gains in predictive accuracy, reliability, and adaptability, especially in noisy and uncertain environments. Our findings highlight AERO as a compelling new direction in the theoretical and practical landscape of optimization.
Related papers
- Tuning for Trustworthiness -- Balancing Performance and Explanation Consistency in Neural Network Optimization [49.567092222782435]
We introduce the novel concept of XAI consistency, defined as the agreement among different feature attribution methods.<n>We create a multi-objective optimization framework that balances predictive performance with explanation.<n>Our research provides a foundation for future investigations into whether models from the trade-off zone-balancing performance loss and XAI consistency-exhibit greater robustness.
arXiv Detail & Related papers (2025-05-12T13:19:14Z) - Seeking Flat Minima over Diverse Surrogates for Improved Adversarial Transferability: A Theoretical Framework and Algorithmic Instantiation [38.12499933796839]
We propose a novel transferability bound that offers provable guarantees for adversarial transferability.<n>Our theoretical results demonstrate that optimizing AEs toward flat minima over the surrogate model set, while controlling the surrogate-target model shift measured by the adversarial model discrepancy, yields a comprehensive guarantee for AE transferability.
arXiv Detail & Related papers (2025-04-23T07:33:45Z) - Evolution-based Region Adversarial Prompt Learning for Robustness Enhancement in Vision-Language Models [52.8949080772873]
We propose an evolution-based region adversarial prompt tuning method called ER-APT.<n>In each training iteration, we first generate AEs using traditional gradient-based methods.<n> Subsequently, a genetic evolution mechanism incorporating selection, mutation, and crossover is applied to optimize the AEs.<n>The final evolved AEs are used for prompt tuning, achieving region-based adversarial optimization instead of conventional single-point adversarial prompt tuning.
arXiv Detail & Related papers (2025-03-17T07:08:47Z) - Global-Decision-Focused Neural ODEs for Proactive Grid Resilience Management [50.34345101758248]
We propose predict-all-then-optimize-globally (PATOG), a framework that integrates outage prediction with globally optimized interventions.<n>Our approach ensures spatially and temporally coherent decision-making, improving both predictive accuracy and operational efficiency.<n>Experiments on synthetic and real-world datasets demonstrate significant improvements in outage prediction consistency and grid resilience.
arXiv Detail & Related papers (2025-02-25T16:15:35Z) - Conformal Symplectic Optimization for Stable Reinforcement Learning [21.491621524500736]
By utilizing relativistic kinetic energy, RAD incorporates from special relativity and limits parameter updates below a finite speed, effectively mitigating abnormal influences.<n> Notably, RAD achieves up to a 155.1% performance improvement, showcasing its efficacy in training Atari games.
arXiv Detail & Related papers (2024-12-03T09:07:31Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
We derive a novel policy gradient-style robust optimization approach, PG-BROIL, to balance expected performance and risk.
Results suggest PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse.
arXiv Detail & Related papers (2021-06-11T16:49:15Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
empowerment principle enables unsupervised stabilization of dynamical systems at upright positions.
We propose an alternative solution based on a trainable representation of a dynamical system as a Gaussian channel.
We show that our method has a lower sample complexity, is more stable in training, possesses the essential properties of the empowerment function, and allows estimation of empowerment from images.
arXiv Detail & Related papers (2020-07-14T21:10:16Z) - Dynamic Regret of Policy Optimization in Non-stationary Environments [120.01408308460095]
We propose two model-free policy optimization algorithms, POWER and POWER++, and establish guarantees for their dynamic regret.
We show that POWER++ improves over POWER on the second component of the dynamic regret by actively adapting to non-stationarity through prediction.
To the best of our knowledge, our work is the first dynamic regret analysis of model-free RL algorithms in non-stationary environments.
arXiv Detail & Related papers (2020-06-30T23:34:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.