論文の概要: Comparative Analysis of AI Agent Architectures for Entity Relationship Classification
- arxiv url: http://arxiv.org/abs/2506.02426v1
- Date: Tue, 03 Jun 2025 04:19:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:35.27557
- Title: Comparative Analysis of AI Agent Architectures for Entity Relationship Classification
- Title(参考訳): エンティティ関係分類のためのAIエージェントアーキテクチャの比較分析
- Authors: Maryam Berijanian, Kuldeep Singh, Amin Sehati,
- Abstract要約: 本研究では、関係分類を行うために設計された3つの異なるAIエージェントアーキテクチャの比較分析を行う。
エージェントアーキテクチャは,(1)反射的自己評価,(2)階層的タスク分解,(3)新しいマルチエージェント動的サンプル生成機構を含む。
実験により,マルチエージェントの協調処理が標準のショットプロンプトより一貫して優れ,微調整モデルの性能にアプローチすることが実証された。
- 参考スコア(独自算出の注目度): 1.6887793771613606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entity relationship classification remains a challenging task in information extraction, especially in scenarios with limited labeled data and complex relational structures. In this study, we conduct a comparative analysis of three distinct AI agent architectures designed to perform relation classification using large language models (LLMs). The agentic architectures explored include (1) reflective self-evaluation, (2) hierarchical task decomposition, and (3) a novel multi-agent dynamic example generation mechanism, each leveraging different modes of reasoning and prompt adaptation. In particular, our dynamic example generation approach introduces real-time cooperative and adversarial prompting. We systematically compare their performance across multiple domains and model backends. Our experiments demonstrate that multi-agent coordination consistently outperforms standard few-shot prompting and approaches the performance of fine-tuned models. These findings offer practical guidance for the design of modular, generalizable LLM-based systems for structured relation extraction. The source codes and dataset are available at \href{https://github.com/maryambrj/ALIEN.git}{https://github.com/maryambrj/ALIEN.git}.
- Abstract(参考訳): エンティティ関係分類は、特にラベル付きデータと複雑な関係構造を持つシナリオにおいて、情報抽出において難しい課題である。
本研究では,大規模言語モデル(LLM)を用いて関係分類を行うように設計された3つのAIエージェントアーキテクチャの比較分析を行った。
エージェントアーキテクチャは,(1)反射的自己評価,(2)階層的タスク分解,(3)新しいマルチエージェント動的サンプル生成機構,それぞれが推論と適応の異なるモードを利用する。
特に、我々の動的サンプル生成アプローチは、リアルタイムの協調的および敵対的プロンプトを導入している。
私たちは、複数のドメインとモデルのバックエンドでそれらのパフォーマンスを体系的に比較します。
実験により,マルチエージェントの協調処理が標準のショットプロンプトより一貫して優れ,微調整モデルの性能にアプローチすることが実証された。
これらの知見は、構造的関係抽出のためのモジュラーで一般化可能なLLMベースのシステムの設計のための実用的なガイダンスを提供する。
ソースコードとデータセットは \href{https://github.com/maryambrj/ALIEN.git}{https://github.com/maryambrj/ALIEN.git} で公開されている。
関連論文リスト
- HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation [11.53083922927901]
HM-RAGは階層型マルチエージェントマルチモーダルRAGフレームワークである。
構造化、非構造化、グラフベースのデータ間での動的知識合成のための協調知能の先駆者である。
論文 参考訳(メタデータ) (2025-04-13T06:55:33Z) - CAISSON: Concept-Augmented Inference Suite of Self-Organizing Neural Networks [0.0]
本稿では,レトリーバル・Augmented Generation(RAG)に対する新しい階層的アプローチであるCAISSONを紹介する。
CAISSONの中核は、文書空間の補完的な組織ビューを作成するために、二重自己組織化マップ(SOM)を活用している。
CAISSONを評価するために,合成財務分析ノートと質問応答ペアを生成するフレームワークであるSynFAQAを開発した。
論文 参考訳(メタデータ) (2024-12-03T21:00:10Z) - AgentRE: An Agent-Based Framework for Navigating Complex Information Landscapes in Relation Extraction [10.65417796726349]
複雑なシナリオにおける関係抽出(RE)は、多種多様な関係型や単一の文内のエンティティ間のあいまいな関係のような課題に直面します。
本稿では,複雑なシナリオにおいてREを実現するために,大規模言語モデルの可能性を完全に活用するエージェントベースのREフレームワークであるAgentREを提案する。
論文 参考訳(メタデータ) (2024-09-03T12:53:05Z) - Multi-Grained Query-Guided Set Prediction Network for Grounded Multimodal Named Entity Recognition [9.506482334842293]
Grounded Multimodal Named Entity Recognition (GMNER) は、新しい情報抽出(IE)タスクである。
近年,機械読解やシーケンス生成に基づくフレームワークを用いた統一手法は,この難易度に限界を生じさせている。
そこで我々は,Multi-fine Query-guided Set Prediction Network (MQSPN) という新しい統合フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-17T05:42:43Z) - Domain-Expanded ASTE: Rethinking Generalization in Aspect Sentiment Triplet Extraction [67.54420015049732]
Aspect Sentiment Triplet extract (ASTE) は感情分析における課題であり、人間の感情に対するきめ細かい洞察を提供することを目的としている。
既存のベンチマークは2つのドメインに限定されており、目に見えないドメイン上でのモデルパフォーマンスを評価しない。
各種ドメインのサンプルに注釈を付けることでドメイン拡張ベンチマークを導入し,ドメイン内設定とドメイン外設定の両方でモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-05-23T18:01:49Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
複素領域における異なる変動演算子の効果について検討する。
モデルの複雑さと性能に影響を及ぼす変化演算子と、それを構成する異なる部分の質を推定する様々な指標に依存するモデルの両方を特徴付ける。
論文 参考訳(メタデータ) (2021-06-16T17:12:26Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - AutoRC: Improving BERT Based Relation Classification Models via
Architecture Search [50.349407334562045]
BERTに基づく関係分類(RC)モデルは、従来のディープラーニングモデルよりも大幅に改善されている。
最適なアーキテクチャとは何かという合意は得られない。
BERTをベースとしたRCモデルのための包括的検索空間を設計し、設計選択を自動的に検出するためにNAS(Neural Architecture Search)手法を用いる。
論文 参考訳(メタデータ) (2020-09-22T16:55:49Z) - Relational-Grid-World: A Novel Relational Reasoning Environment and An
Agent Model for Relational Information Extraction [0.0]
強化学習(RL)エージェントは特定の問題のために特別に設計され、一般的には解釈不能な作業プロセスを持つ。
統計的手法に基づくRLアルゴリズムは、論理プログラミングのようなシンボリック人工知能(AI)ツールを用いて、一般化可能性と解釈可能性の観点から改善することができる。
環境オブジェクトの明示的なリレーショナル表現をサポートするモデルフリーなRLアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-07-12T11:30:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。