論文の概要: HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation
- arxiv url: http://arxiv.org/abs/2504.12330v1
- Date: Sun, 13 Apr 2025 06:55:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:39:05.705167
- Title: HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation
- Title(参考訳): HM-RAG:階層型マルチエージェントマルチモーダル検索生成
- Authors: Pei Liu, Xin Liu, Ruoyu Yao, Junming Liu, Siyuan Meng, Ding Wang, Jun Ma,
- Abstract要約: HM-RAGは階層型マルチエージェントマルチモーダルRAGフレームワークである。
構造化、非構造化、グラフベースのデータ間での動的知識合成のための協調知能の先駆者である。
- 参考スコア(独自算出の注目度): 11.53083922927901
- License:
- Abstract: While Retrieval-Augmented Generation (RAG) augments Large Language Models (LLMs) with external knowledge, conventional single-agent RAG remains fundamentally limited in resolving complex queries demanding coordinated reasoning across heterogeneous data ecosystems. We present HM-RAG, a novel Hierarchical Multi-agent Multimodal RAG framework that pioneers collaborative intelligence for dynamic knowledge synthesis across structured, unstructured, and graph-based data. The framework is composed of three-tiered architecture with specialized agents: a Decomposition Agent that dissects complex queries into contextually coherent sub-tasks via semantic-aware query rewriting and schema-guided context augmentation; Multi-source Retrieval Agents that carry out parallel, modality-specific retrieval using plug-and-play modules designed for vector, graph, and web-based databases; and a Decision Agent that uses consistency voting to integrate multi-source answers and resolve discrepancies in retrieval results through Expert Model Refinement. This architecture attains comprehensive query understanding by combining textual, graph-relational, and web-derived evidence, resulting in a remarkable 12.95% improvement in answer accuracy and a 3.56% boost in question classification accuracy over baseline RAG systems on the ScienceQA and CrisisMMD benchmarks. Notably, HM-RAG establishes state-of-the-art results in zero-shot settings on both datasets. Its modular architecture ensures seamless integration of new data modalities while maintaining strict data governance, marking a significant advancement in addressing the critical challenges of multimodal reasoning and knowledge synthesis in RAG systems. Code is available at https://github.com/ocean-luna/HMRAG.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG)は外部知識でLarge Language Models (LLM)を増強するが、従来の単一エージェントRAGは、異種データエコシステム間の協調推論を要求する複雑なクエリの解決に基本的に制限されている。
本稿では,階層型マルチエージェントマルチモーダルRAGフレームワークであるHM-RAGについて述べる。
フレームワークは、特殊エージェントを備えた3層アーキテクチャで構成されている: 複雑なクエリをセマンティック・アウェアなクエリ書き換えとスキーマ誘導コンテキスト拡張を通じてコンテキスト的に一貫性のあるサブタスクに分解する分解エージェント、ベクトル・グラフ・ウェブベースデータベース用に設計されたプラグ・アンド・プレイモジュールを用いて並列かつモダリティ固有の検索を行うマルチソース検索エージェント、および、一貫性の投票を使用して、複数のソースの回答を統合し、結果をエキスパート・モデル・リファインメント(Expert Model Refinement)を介して解決する決定エージェント。
このアーキテクチャは、テキスト、グラフ-リレーショナル、およびWebから得られた証拠を組み合わせることで包括的なクエリ理解を実現し、その結果、ScienceQAおよびCrisisMMDベンチマーク上のベースラインRAGシステムよりも、解答精度が12.95%向上し、質問分類精度が3.56%向上した。
特にHM-RAGは、両方のデータセットでゼロショット設定で、最先端の結果を確立する。
そのモジュラーアーキテクチャは、厳密なデータガバナンスを維持しながら、新しいデータモダリティのシームレスな統合を保証する。
コードはhttps://github.com/ocean-luna/HMRAGで公開されている。
関連論文リスト
- Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning [51.54046200512198]
Retrieval-augmented Generation (RAG) は、外部の現在の知識を大規模言語モデルに組み込むために広く利用されている。
標準的なRAGパイプラインは、クエリ書き換え、文書検索、文書フィルタリング、回答生成など、いくつかのコンポーネントから構成される。
これらの課題を克服するため,RAGパイプラインを多エージェント協調作業として,各コンポーネントをRLエージェントとして扱うことを提案する。
論文 参考訳(メタデータ) (2025-01-25T14:24:50Z) - Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
大規模言語モデル(LLM)は、人間のようなテキスト生成や自然言語理解を可能にすることによって、人工知能(AI)に革命をもたらした。
Retrieval Augmented Generation (RAG) がソリューションとして登場し、リアルタイムデータ検索を統合して文脈に関連のある応答を提供することでLLMを強化している。
Agentic Retrieval-Augmented Generation (RAG)は、自律的なAIエージェントをRAGパイプラインに埋め込むことによって、これらの制限を超越する。
論文 参考訳(メタデータ) (2025-01-15T20:40:25Z) - QuIM-RAG: Advancing Retrieval-Augmented Generation with Inverted Question Matching for Enhanced QA Performance [1.433758865948252]
本研究では,RAG(Retrieval-Augmented Generation)システム構築のための新しいアーキテクチャを提案する。
RAGアーキテクチャは、ターゲット文書から応答を生成するために構築される。
本稿では,本システムにおける検索機構の新しいアプローチQuIM-RAGを紹介する。
論文 参考訳(メタデータ) (2025-01-06T01:07:59Z) - Dynamic Multi-Agent Orchestration and Retrieval for Multi-Source Question-Answer Systems using Large Language Models [0.0]
本稿では,大規模言語モデル(LLM)検索におけるいくつかの高度な手法を組み合わせて,堅牢で多ソースな問合せシステムの開発を支援する手法を提案する。
この手法は、協調型マルチエージェントオーケストレーションと動的検索アプローチにより、多様なデータソースからの情報を統合するように設計されている。
提案手法は応答精度と妥当性を向上し,質問応答システムを開発するための汎用的でスケーラブルなフレームワークを提供する。
論文 参考訳(メタデータ) (2024-12-23T20:28:20Z) - A Collaborative Multi-Agent Approach to Retrieval-Augmented Generation Across Diverse Data [0.0]
Retrieval-Augmented Generation (RAG)はLarge Language Models (LLM)を強化する
従来のRAGシステムでは、クエリ生成、データ検索、レスポンス合成に単一エージェントアーキテクチャを使用するのが一般的である。
本稿では,これらの制約に対処するマルチエージェントRAGシステムを提案する。
論文 参考訳(メタデータ) (2024-12-08T07:18:19Z) - Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [92.57125498367907]
マルチモーダル大規模言語モデル(MLLM)に固有の「ハロシン化」問題を緩和する上で,mRAG(Multimodal Retrieval Augmented Generation)が重要な役割を果たしている。
マルチモーダル検索のための自己適応型計画エージェントOmniSearchを提案する。
論文 参考訳(メタデータ) (2024-11-05T09:27:21Z) - ConTReGen: Context-driven Tree-structured Retrieval for Open-domain Long-form Text Generation [26.4086456393314]
長い形式のテキスト生成には、幅と深さの両方で複雑なクエリに対処する一貫性のある包括的な応答が必要である。
既存の反復的な検索拡張生成アプローチは、複雑なクエリの各側面を深く掘り下げるのに苦労することが多い。
本稿では,コンテキスト駆動型木構造検索手法を用いた新しいフレームワークであるConTReGenを紹介する。
論文 参考訳(メタデータ) (2024-10-20T21:17:05Z) - BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
大規模言語モデル(LLM)は、様々な領域でますます重要になっている。
BabelBenchは、コード実行によるマルチモーダルなマルチ構造化データ管理におけるLLMの熟練度を評価する革新的なベンチマークフレームワークである。
BabelBenchの実験結果から,ChatGPT 4のような最先端モデルでさえ,大幅な改善の余地があることが示唆された。
論文 参考訳(メタデータ) (2024-10-01T15:11:24Z) - STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases [93.96463520716759]
テキストと知識ベースを用いた大規模半構造検索ベンチマークSTARKを開発した。
本ベンチマークでは, 製品検索, 学術論文検索, 精密医療におけるクエリの3分野について検討した。
多様なリレーショナル情報と複雑なテキスト特性を統合した,現実的なユーザクエリを合成する,新しいパイプラインを設計する。
論文 参考訳(メタデータ) (2024-04-19T22:54:54Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - Revealing the Invisible with Model and Data Shrinking for
Composite-database Micro-expression Recognition [49.463864096615254]
入力複雑性とモデル複雑性を含む学習複雑性の影響を分析する。
より浅層構造と低分解能入力データを探索する再帰畳み込みネットワーク(RCN)を提案する。
学習可能なパラメータを増やさなくてもRCNと統合できる3つのパラメータフリーモジュールを開発した。
論文 参考訳(メタデータ) (2020-06-17T06:19:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。