FroM: Frobenius Norm-Based Data-Free Adaptive Model Merging
- URL: http://arxiv.org/abs/2506.02478v1
- Date: Tue, 03 Jun 2025 05:50:09 GMT
- Title: FroM: Frobenius Norm-Based Data-Free Adaptive Model Merging
- Authors: Zijian Li, Xiaocheng Feng, Huixin Liu, Yichong Huang, Ting Liu, Bing Qin,
- Abstract summary: We introduce an improvement to the RegMean method, which indirectly leverages the training data to approximate the outputs of the linear layers before and after merging.<n>We propose an adaptive merging method called FroM, which directly measures the model parameters using the Frobenius norm, without any training data.
- Score: 34.221780193608815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of large language models, fine-tuning has emerged as an effective method to enhance performance in specific scenarios by injecting domain-specific knowledge. In this context, model merging techniques provide a solution for fusing knowledge from multiple fine-tuning models by combining their parameters. However, traditional methods often encounter task interference when merging full fine-tuning models, and this problem becomes even more evident in parameter-efficient fine-tuning scenarios. In this paper, we introduce an improvement to the RegMean method, which indirectly leverages the training data to approximate the outputs of the linear layers before and after merging. We propose an adaptive merging method called FroM, which directly measures the model parameters using the Frobenius norm, without any training data. By introducing an additional hyperparameter for control, FroM outperforms baseline methods across various fine-tuning scenarios, alleviating the task interference problem.
Related papers
- NAN: A Training-Free Solution to Coefficient Estimation in Model Merging [61.36020737229637]
We show that the optimal merging weights should scale with the amount of task-specific information encoded in each model.<n>We propose NAN, a simple yet effective method that estimates model merging coefficients via the inverse of parameter norm.<n>NAN is training-free, plug-and-play, and applicable to a wide range of merging strategies.
arXiv Detail & Related papers (2025-05-22T02:46:08Z) - Dynamic Fisher-weighted Model Merging via Bayesian Optimization [37.02810891820468]
Existing merging approaches typically involve scaling the parameters model-wise or integrating parameter importance parameter-wise.<n>We unify these strategies into a more general merging framework, and introduce Dynamic Fisher-weighted Merging (DF-Merge)<n>We show that DF-Merge outperforms strong baselines across models of different sizes and a variety of tasks.
arXiv Detail & Related papers (2025-04-26T18:31:14Z) - Parameter Efficient Merging for Multimodal Large Language Models with Complementary Parameter Adaptation [17.39117429338763]
We propose CoPA-Merging, a training-free parameter efficient merging method with complementary parameter adaptation.<n>We establish a benchmark consisting of diverse multimodal tasks, on which we conduct experiments to certificate the outstanding performance and generalizability of our method.
arXiv Detail & Related papers (2025-02-24T13:52:05Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.<n>Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.<n>We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.<n>We propose a novel model fine-tuning method to make full use of these ineffective parameters.<n>Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Model Merging and Safety Alignment: One Bad Model Spoils the Bunch [70.614652904151]
Merging Large Language Models (LLMs) is a cost-effective technique for combining multiple expert LLMs into a single versatile model.
Current approaches often overlook the importance of safety alignment during merging, leading to highly misaligned models.
We evaluate several popular model merging techniques, demonstrating that existing methods do not only transfer domain expertise but also propagate misalignment.
arXiv Detail & Related papers (2024-06-20T17:59:58Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
We introduce an untrained forward model residual block within the model-based architecture to match the data consistency in the measurement domain for each instance.
Our approach offers a unified solution that is less parameter-sensitive, requires no additional data, and enables simultaneous fitting of the forward model and reconstruction in a single pass.
arXiv Detail & Related papers (2024-03-07T19:02:13Z) - TIES-Merging: Resolving Interference When Merging Models [95.59265307318752]
Transfer learning can confer significant advantages, including improved downstream performance, faster convergence, and better sample efficiency.
Model merging has emerged as a solution to combine multiple task-specific models into a single model without performing additional training.
Existing merging methods often ignore the interference between parameters of different models, resulting in large performance drops when merging multiple models.
We propose TIES-Merging, which introduces three novel steps when merging models: resetting parameters that only changed a small amount during fine-tuning, resolving sign conflicts, and merging only the parameters that are in alignment with the final agreed-upon sign.
arXiv Detail & Related papers (2023-06-02T17:31:32Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [47.432215933099016]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.<n>This creates a barrier to fusing knowledge across individual models to yield a better single model.<n>We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.