EvaLearn: Quantifying the Learning Capability and Efficiency of LLMs via Sequential Problem Solving
- URL: http://arxiv.org/abs/2506.02672v2
- Date: Thu, 05 Jun 2025 12:44:51 GMT
- Title: EvaLearn: Quantifying the Learning Capability and Efficiency of LLMs via Sequential Problem Solving
- Authors: Shihan Dou, Ming Zhang, Chenhao Huang, Jiayi Chen, Feng Chen, Shichun Liu, Yan Liu, Chenxiao Liu, Cheng Zhong, Zongzhang Zhang, Tao Gui, Chao Xin, Wei Chengzhi, Lin Yan, Qi Zhang, Yonghui Wu, Xuanjing Huang,
- Abstract summary: EvaLearn is a benchmark designed to evaluate large language models (LLMs) on their learning capability and efficiency in challenging tasks.<n>We benchmark nine frontier models and observe varied performance profiles.<n>We observe that current LLMs with stronger static abilities do not show a clear advantage in learning capability across all tasks.
- Score: 61.99289768925256
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We introduce EvaLearn, a pioneering benchmark designed to evaluate large language models (LLMs) on their learning capability and efficiency in challenging tasks, a critical, yet underexplored aspect of model potential. EvaLearn contains 648 challenging problems across six task types, grouped into 182 sequences, each sequence dedicated to one task type. Diverging from most existing benchmarks that evaluate models in parallel, EvaLearn requires models to solve problems sequentially, allowing them to leverage the experience gained from previous solutions. EvaLearn provides five comprehensive automated metrics to evaluate models and quantify their learning capability and efficiency. We extensively benchmark nine frontier models and observe varied performance profiles: some models, such as Claude-3.7-sonnet, start with moderate initial performance but exhibit strong learning ability, while some models struggle to benefit from experience and may even show negative transfer. Moreover, we investigate model performance under two learning settings and find that instance-level rubrics and teacher-model feedback further facilitate model learning. Importantly, we observe that current LLMs with stronger static abilities do not show a clear advantage in learning capability across all tasks, highlighting that EvaLearn evaluates a new dimension of model performance. We hope EvaLearn provides a novel evaluation perspective for assessing LLM potential and understanding the gap between models and human capabilities, promoting the development of deeper and more dynamic evaluation approaches. All datasets, the automatic evaluation framework, and the results studied in this paper are available at the GitHub repository.
Related papers
- Catastrophic Forgetting in LLMs: A Comparative Analysis Across Language Tasks [0.0]
Large Language Models (LLMs) have significantly advanced Natural Language Processing (NLP)<n>This study evaluates the continual fine-tuning of various open-source LLMs on key NLU tasks.<n>Our results indicate that models such as Phi-3.5-mini exhibit minimal forgetting while maintaining strong learning capabilities.
arXiv Detail & Related papers (2025-04-01T23:06:55Z) - Interactive DualChecker for Mitigating Hallucinations in Distilling Large Language Models [7.632217365130212]
Large Language Models (LLMs) have demonstrated exceptional capabilities across various machine learning (ML) tasks.
These models can produce hallucinations, particularly in domains with incomplete knowledge.
We introduce DualChecker, an innovative framework designed to mitigate hallucinations and improve the performance of both teacher and student models.
arXiv Detail & Related papers (2024-08-22T12:04:04Z) - Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
We extensively and comprehensively investigate two types of state-of-the-art learning-based approaches.
We experimentally demonstrate the priority of sequence-based models and the limited abilities of both graph-based models.
arXiv Detail & Related papers (2024-08-14T13:01:30Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Teaching Language Models to Self-Improve through Interactive Demonstrations [83.9421355808174]
Self-improving ability of large language models has been shown to be absent and difficult to learn for smaller models.
We introduce TriPosT, a training algorithm that endows smaller models with such self-improvement ability.
We show that our approach can improve a LLaMA-7b's performance on math and reasoning tasks by up to 7.13%.
arXiv Detail & Related papers (2023-10-20T14:11:04Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Distill on the Go: Online knowledge distillation in self-supervised
learning [1.1470070927586016]
Recent works have shown that wider and deeper models benefit more from self-supervised learning than smaller models.
We propose Distill-on-the-Go (DoGo), a self-supervised learning paradigm using single-stage online knowledge distillation.
Our results show significant performance gain in the presence of noisy and limited labels.
arXiv Detail & Related papers (2021-04-20T09:59:23Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.