論文の概要: Smoothed Preference Optimization via ReNoise Inversion for Aligning Diffusion Models with Varied Human Preferences
- arxiv url: http://arxiv.org/abs/2506.02698v2
- Date: Fri, 06 Jun 2025 03:14:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.053449
- Title: Smoothed Preference Optimization via ReNoise Inversion for Aligning Diffusion Models with Varied Human Preferences
- Title(参考訳): リノワーズ逆変換による空いた人間の選好を考慮した拡散モデルの平滑な選好最適化
- Authors: Yunhong Lu, Qichao Wang, Hengyuan Cao, Xiaoyin Xu, Min Zhang,
- Abstract要約: 直接選好最適化(DPO)は、テキスト・ツー・イメージ(T2I)生成モデルと、ペアの選好データを用いた人間の選好を一致させる。
本稿では, DPO の目的を改善するために, 好み分布をモデル化する新しい手法である SmPO-Diffusion を提案する。
提案手法は,既存手法における過度な最適化と客観的なミスアライメントの問題を効果的に軽減する。
- 参考スコア(独自算出の注目度): 13.588231827053923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Direct Preference Optimization (DPO) aligns text-to-image (T2I) generation models with human preferences using pairwise preference data. Although substantial resources are expended in collecting and labeling datasets, a critical aspect is often neglected: \textit{preferences vary across individuals and should be represented with more granularity.} To address this, we propose SmPO-Diffusion, a novel method for modeling preference distributions to improve the DPO objective, along with a numerical upper bound estimation for the diffusion optimization objective. First, we introduce a smoothed preference distribution to replace the original binary distribution. We employ a reward model to simulate human preferences and apply preference likelihood averaging to improve the DPO loss, such that the loss function approaches zero when preferences are similar. Furthermore, we utilize an inversion technique to simulate the trajectory preference distribution of the diffusion model, enabling more accurate alignment with the optimization objective. Our approach effectively mitigates issues of excessive optimization and objective misalignment present in existing methods through straightforward modifications. Our SmPO-Diffusion achieves state-of-the-art performance in preference evaluation, outperforming baselines across metrics with lower training costs. The project page is https://jaydenlyh.github.io/SmPO-project-page/.
- Abstract(参考訳): 直接選好最適化(DPO)は、テキスト・ツー・イメージ(T2I)生成モデルと、ペアの選好データを用いた人間の選好を一致させる。
データセットの収集とラベル付けにはかなりのリソースが費やされているが、重要な側面は無視されることが多い。
そこで本研究では,DPOの目的を最適化する手法であるSmPO-Diffusionと,拡散最適化の目標に対する数値上界推定法を提案する。
まず、元のバイナリ分布を置き換えるために、スムーズな好み分布を導入する。
我々は、人間の嗜好をシミュレートし、DPO損失を改善するために平均的な嗜好条件を適用するために報酬モデルを用いて、損失関数が嗜好に類似する場合にゼロに近づくようにした。
さらに、インバージョン手法を用いて拡散モデルの軌道優先分布をシミュレートし、最適化目標とのより正確なアライメントを可能にする。
提案手法は,既存手法における過度な最適化と客観的なミスアライメントの問題を,簡単な修正によって効果的に緩和する。
当社のSmPO-Diffusionは,トレーニングコストの低い基準値よりも高い精度で,好み評価における最先端のパフォーマンスを実現する。
プロジェクトページはhttps://jaydenlyh.github.io/SmPO-project-page/。
関連論文リスト
- Self-NPO: Negative Preference Optimization of Diffusion Models by Simply Learning from Itself without Explicit Preference Annotations [60.143658714894336]
拡散モデルは、画像、ビデオ、および3Dコンテンツ生成を含む様々な視覚生成タスクにおいて顕著な成功を収めている。
優先度最適化(PO)は、これらのモデルを人間の嗜好に合わせることを目的とした、顕著で成長している研究分野である。
モデル自体からのみ学習する負の選好最適化アプローチであるSelf-NPOを導入する。
論文 参考訳(メタデータ) (2025-05-17T01:03:46Z) - Leveraging Robust Optimization for LLM Alignment under Distribution Shifts [52.983390470606146]
人間の値に整合した出力を生成するために、大規模言語モデルを操る上で、優先順位アライメント手法はますます重要になっている。
このようなシフトに拘わらず、好みのアライメントを改善する新しい分布対応最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-08T09:14:38Z) - InPO: Inversion Preference Optimization with Reparametrized DDIM for Efficient Diffusion Model Alignment [12.823734370183482]
拡散モデルの直接選好アライメント法であるDDIM-InPOを導入する。
提案手法は拡散モデルを単一ステップ生成モデルとして概念化し,特定の潜伏変数の出力を選択的に微調整する。
実験結果から, DDIM-InPOは400ステップの微調整で最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2025-03-24T08:58:49Z) - Calibrated Multi-Preference Optimization for Aligning Diffusion Models [92.90660301195396]
Calibrated Preference Optimization (CaPO) は、テキスト・ツー・イメージ(T2I)拡散モデルを調整する新しい手法である。
CaPOは、人間の注釈のない複数の報酬モデルからの一般的な好みを取り入れている。
実験結果から, CaPOは従来法よりも常に優れていたことが示唆された。
論文 参考訳(メタデータ) (2025-02-04T18:59:23Z) - Refining Alignment Framework for Diffusion Models with Intermediate-Step Preference Ranking [50.325021634589596]
拡散モデルと人間の嗜好を整合させるためのTalored Optimization Preference(TailorPO)フレームワークを提案する。
提案手法は,ステップワイド報酬に基づいて,中間雑音のサンプルを直接ランク付けし,勾配方向の問題を効果的に解決する。
実験結果から,本手法は審美的,人為的な画像生成能力を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2025-02-01T16:08:43Z) - Diffusion Model Alignment Using Direct Preference Optimization [103.2238655827797]
拡散DPOは,ヒトの比較データを直接最適化することにより,拡散モデルを人間の嗜好に合わせる手法である。
拡散DPOを用いた最先端安定拡散XL(SDXL)-1.0モデルの基礎モデルを微調整する。
また、AIフィードバックを使用し、人間の好みのトレーニングに匹敵するパフォーマンスを持つ亜種も開発しています。
論文 参考訳(メタデータ) (2023-11-21T15:24:05Z) - Adversarial Preference Optimization: Enhancing Your Alignment via RM-LLM Game [31.66896160733569]
そこで本稿では,より効率的な人選好最適化を目的としたAPO(Adversarial Preference Optimization)フレームワークを提案する。
提案手法は,LLMの有効性と無害性の観点から,既存のアライメントベースラインをさらに強化する。
論文 参考訳(メタデータ) (2023-11-14T10:10:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。