Implicit Regularization of the Deep Inverse Prior Trained with Inertia
- URL: http://arxiv.org/abs/2506.02986v1
- Date: Tue, 03 Jun 2025 15:24:54 GMT
- Title: Implicit Regularization of the Deep Inverse Prior Trained with Inertia
- Authors: Nathan Buskulic, Jalal Fadil, Yvain Quéau,
- Abstract summary: We provide convergence and recovery guarantees for self-supervised neural networks applied to inverse problems.<n>We show that training a network with our inertial algorithm enjoys similar recovery guarantees though with a less sharp linear convergence rate.
- Score: 2.089191490381739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving inverse problems with neural networks benefits from very few theoretical guarantees when it comes to the recovery guarantees. We provide in this work convergence and recovery guarantees for self-supervised neural networks applied to inverse problems, such as Deep Image/Inverse Prior, and trained with inertia featuring both viscous and geometric Hessian-driven dampings. We study both the continuous-time case, i.e., the trajectory of a dynamical system, and the discrete case leading to an inertial algorithm with an adaptive step-size. We show in the continuous-time case that the network can be trained with an optimal accelerated exponential convergence rate compared to the rate obtained with gradient flow. We also show that training a network with our inertial algorithm enjoys similar recovery guarantees though with a less sharp linear convergence rate.
Related papers
- Recovery Guarantees of Unsupervised Neural Networks for Inverse Problems
trained with Gradient Descent [0.6522338519818377]
We show that convergence and recovery guarantees for generic loss functions hold true when trained through gradient flow.
We also show that the discretization only affects the overparametrization bound for a two-layer DIP network by a constant.
arXiv Detail & Related papers (2024-03-08T15:45:13Z) - Robust Stochastically-Descending Unrolled Networks [85.6993263983062]
Deep unrolling is an emerging learning-to-optimize method that unrolls a truncated iterative algorithm in the layers of a trainable neural network.<n>We show that convergence guarantees and generalizability of the unrolled networks are still open theoretical problems.<n>We numerically assess unrolled architectures trained under the proposed constraints in two different applications.
arXiv Detail & Related papers (2023-12-25T18:51:23Z) - Convergence Analysis for Learning Orthonormal Deep Linear Neural
Networks [27.29463801531576]
We provide convergence analysis for training orthonormal deep linear neural networks.
Our results shed light on how increasing the number of hidden layers can impact the convergence speed.
arXiv Detail & Related papers (2023-11-24T18:46:54Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Convergence and Recovery Guarantees of Unsupervised Neural Networks for Inverse Problems [2.6695224599322214]
We provide deterministic convergence and recovery guarantees for the class of unsupervised feedforward multilayer neural networks trained to solve inverse problems.
We also derive overparametrization bounds under which a two-layers Deep Inverse Prior network with smooth activation function will benefit from our guarantees.
arXiv Detail & Related papers (2023-09-21T14:48:02Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Convergence Guarantees of Overparametrized Wide Deep Inverse Prior [1.5362025549031046]
Inverse Priors is an unsupervised approach to transform a random input into an object whose image under the forward model matches the observation.
We provide overparametrization bounds under which such network trained via continuous-time gradient descent will converge exponentially fast with high probability.
This work is thus a first step towards a theoretical understanding of overparametrized DIP networks, and more broadly it participates to the theoretical understanding of neural networks in inverse problem settings.
arXiv Detail & Related papers (2023-03-20T16:49:40Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - On the generalization of learning algorithms that do not converge [54.122745736433856]
Generalization analyses of deep learning typically assume that the training converges to a fixed point.
Recent results indicate that in practice, the weights of deep neural networks optimized with gradient descent often oscillate indefinitely.
arXiv Detail & Related papers (2022-08-16T21:22:34Z) - Learning Dynamics and Generalization in Reinforcement Learning [59.530058000689884]
We show theoretically that temporal difference learning encourages agents to fit non-smooth components of the value function early in training.
We show that neural networks trained using temporal difference algorithms on dense reward tasks exhibit weaker generalization between states than randomly networks and gradient networks trained with policy methods.
arXiv Detail & Related papers (2022-06-05T08:49:16Z) - Convergence Analysis and Implicit Regularization of Feedback Alignment
for Deep Linear Networks [27.614609336582568]
We theoretically analyze the Feedback Alignment (FA) algorithm, an efficient alternative to backpropagation for training neural networks.
We provide convergence guarantees with rates for deep linear networks for both continuous and discrete dynamics.
arXiv Detail & Related papers (2021-10-20T22:57:03Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
We take a step towards closing the gap between theory and practice by significantly improving the known theoretical bounds on both the network width and the convergence time.
We show that convergence to a global minimum is guaranteed for networks with quadratic widths in the sample size and linear in their depth at a time logarithmic in both.
Our analysis and convergence bounds are derived via the construction of a surrogate network with fixed activation patterns that can be transformed at any time to an equivalent ReLU network of a reasonable size.
arXiv Detail & Related papers (2021-01-12T00:40:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.