Targeted Forgetting of Image Subgroups in CLIP Models
- URL: http://arxiv.org/abs/2506.03117v1
- Date: Tue, 03 Jun 2025 17:50:03 GMT
- Title: Targeted Forgetting of Image Subgroups in CLIP Models
- Authors: Zeliang Zhang, Gaowen Liu, Charles Fleming, Ramana Rao Kompella, Chenliang Xu,
- Abstract summary: Foundation models (FMs) such as CLIP have demonstrated impressive zero-shot performance across various tasks.<n>They often inherit harmful or unwanted knowledge from noisy internet-sourced datasets.<n>Existing model unlearning methods either rely on access to pre-trained datasets or focus on coarse-grained unlearning.<n>We propose a novel three-stage approach that progressively unlearns targeted knowledge while mitigating over-forgetting.
- Score: 30.78624907082701
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation models (FMs) such as CLIP have demonstrated impressive zero-shot performance across various tasks by leveraging large-scale, unsupervised pre-training. However, they often inherit harmful or unwanted knowledge from noisy internet-sourced datasets, compromising their reliability in real-world applications. Existing model unlearning methods either rely on access to pre-trained datasets or focus on coarse-grained unlearning (e.g., entire classes), leaving a critical gap for fine-grained unlearning. In this paper, we address the challenging scenario of selectively forgetting specific portions of knowledge within a class, without access to pre-trained data, while preserving the model's overall performance. We propose a novel three-stage approach that progressively unlearns targeted knowledge while mitigating over-forgetting. It consists of (1) a forgetting stage to fine-tune the CLIP on samples to be forgotten, (2) a reminding stage to restore performance on retained samples, and (3) a restoring stage to recover zero-shot capabilities using model souping. Additionally, we introduce knowledge distillation to handle the distribution disparity between forgetting, retaining samples, and unseen pre-trained data. Extensive experiments on CIFAR-10, ImageNet-1K, and style datasets demonstrate that our approach effectively unlearns specific subgroups while maintaining strong zero-shot performance on semantically similar subgroups and other categories, significantly outperforming baseline unlearning methods, which lose effectiveness under the CLIP unlearning setting.
Related papers
- Federated Unlearning Model Recovery in Data with Skewed Label Distributions [10.236494861079779]
This paper proposes a recovery method of federated unlearning with skewed label distributions.<n>We first adopt a strategy that incorporates oversampling with deep learning to supplement the skewed class data.<n>Then, a density-based denoising method is applied to remove noise from the generated data.<n>All the remaining clients leverage the enhanced local datasets and engage in iterative training to effectively restore the performance of the unlearning model.
arXiv Detail & Related papers (2024-12-18T03:25:11Z) - Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
We propose a new adaptation framework called Data Adaptive Traceback.
Specifically, we utilize a zero-shot-based method to extract the most downstream task-related subset of the pre-training data.
We adopt a pseudo-label-based semi-supervised technique to reuse the pre-training images and a vision-language contrastive learning method to address the confirmation bias issue in semi-supervised learning.
arXiv Detail & Related papers (2024-07-11T18:01:58Z) - Lightweight Unsupervised Federated Learning with Pretrained Vision Language Model [32.094290282897894]
Federated learning aims to train a collective model from physically isolated clients while safeguarding the privacy of users' data.
We propose a novel lightweight unsupervised federated learning approach that leverages unlabeled data on each client to perform lightweight model training and communication.
Our proposed method greatly enhances model performance in comparison to CLIP's zero-shot predictions and even outperforms supervised federated learning benchmark methods.
arXiv Detail & Related papers (2024-04-17T03:42:48Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
Machine Unlearning is the process of selectively discarding information designated to specific sets or classes of data from a pre-trained model.
We propose a methodology tailored for the purposeful elimination of information linked to a specific class of data from a pre-trained classification network.
Our novel approach, termed textbfPartially-Blinded Unlearning (PBU), surpasses existing state-of-the-art class unlearning methods, demonstrating superior effectiveness.
arXiv Detail & Related papers (2024-03-24T17:33:22Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Retrieval-Enhanced Contrastive Vision-Text Models [61.783728119255365]
We propose to equip vision-text models with the ability to refine their embedding with cross-modal retrieved information from a memory at inference time.
Remarkably, we show that this can be done with a light-weight, single-layer, fusion transformer on top of a frozen CLIP.
Our experiments validate that our retrieval-enhanced contrastive (RECO) training improves CLIP performance substantially on several challenging fine-grained tasks.
arXiv Detail & Related papers (2023-06-12T15:52:02Z) - Getting More Juice Out of Your Data: Hard Pair Refinement Enhances Visual-Language Models Without Extra Data [122.282521548393]
Contrastive Language-Image Pre-training (CLIP) has become the standard for cross-modal image-text representation learning.<n>We introduce HELIP, a cost-effective strategy that improves CLIP models by exploiting challenging text-image pairs within existing datasets in continuous training.
arXiv Detail & Related papers (2023-05-09T07:00:17Z) - Masked Unsupervised Self-training for Zero-shot Image Classification [98.23094305347709]
Masked Unsupervised Self-Training (MUST) is a new approach which leverages two different and complimentary sources of supervision: pseudo-labels and raw images.
MUST improves upon CLIP by a large margin and narrows the performance gap between unsupervised and supervised classification.
arXiv Detail & Related papers (2022-06-07T02:03:06Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z) - CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action
Recognition [52.66360172784038]
We propose a clustering-based model, which considers all training samples at once, instead of optimizing for each instance individually.
We call the proposed method CLASTER and observe that it consistently improves over the state-of-the-art in all standard datasets.
arXiv Detail & Related papers (2021-01-18T12:46:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.