論文の概要: AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation
- arxiv url: http://arxiv.org/abs/2506.03122v1
- Date: Tue, 03 Jun 2025 17:54:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:35.975042
- Title: AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation
- Title(参考訳): AUTOCIRCUIT-RL: 自動回路トポロジー生成のための強化学習駆動型LLM
- Authors: Prashanth Vijayaraghavan, Luyao Shi, Ehsan Degan, Vandana Mukherjee, Xin Zhang,
- Abstract要約: AUTOCIRCUIT-RLは、アナログ回路の自動合成のための新しい強化学習ベースのフレームワークである。
有効回路は12%増加し、最高のベースラインに比べて効率が14%向上する。
トレーニングデータに制限のある有効な回路で60%以上の成功を達成し、強力な一般化を示す。
- 参考スコア(独自算出の注目度): 6.2730802180534155
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Analog circuit topology synthesis is integral to Electronic Design Automation (EDA), enabling the automated creation of circuit structures tailored to specific design requirements. However, the vast design search space and strict constraint adherence make efficient synthesis challenging. Leveraging the versatility of Large Language Models (LLMs), we propose AUTOCIRCUIT-RL,a novel reinforcement learning (RL)-based framework for automated analog circuit synthesis. The framework operates in two phases: instruction tuning, where an LLM learns to generate circuit topologies from structured prompts encoding design constraints, and RL refinement, which further improves the instruction-tuned model using reward models that evaluate validity, efficiency, and output voltage. The refined model is then used directly to generate topologies that satisfy the design constraints. Empirical results show that AUTOCIRCUIT-RL generates ~12% more valid circuits and improves efficiency by ~14% compared to the best baselines, while reducing duplicate generation rates by ~38%. It achieves over 60% success in synthesizing valid circuits with limited training data, demonstrating strong generalization. These findings highlight the framework's effectiveness in scaling to complex circuits while maintaining efficiency and constraint adherence, marking a significant advancement in AI-driven circuit design.
- Abstract(参考訳): アナログ回路トポロジー合成は電子設計自動化(EDA)に不可欠なものであり、特定の設計要件に合わせて回路構造の自動生成を可能にする。
しかし、膨大な設計探索空間と厳密な制約順守は効率的な合成を困難にしている。
本稿では,Large Language Models(LLMs)の汎用性を活用し,アナログ回路の自動合成のための新しい強化学習(RL)フレームワークであるAUTOCIRCUIT-RLを提案する。
命令チューニングでは、LLMが構造化プロンプトから回路トポロジを生成することを学習し、設計制約を符号化する。
洗練されたモデルは、設計制約を満たすトポロジを生成するために直接使用される。
実験の結果、AUTOCIRCUIT-RLはより有効な回路を約12%生成し、最高のベースラインに比べて14%効率を向上し、重複生成率を約38%削減した。
有効な回路を限られた訓練データで合成することで60%以上の成功を達成し、強力な一般化を示す。
これらの知見は、AI駆動回路設計において、効率性と制約順守を維持しながら、複雑な回路へのスケーリングにおけるフレームワークの有効性を強調している。
関連論文リスト
- Architect of the Bits World: Masked Autoregressive Modeling for Circuit Generation Guided by Truth Table [5.300504429005315]
本稿では,回路生成のための条件生成モデルと微分可能なアーキテクチャ探索(DAS)を組み合わせた新しい手法を提案する。
まず、Circuit AutoEncoderに基づいてトレーニングされた回路トークンであるCircuitVQを紹介する。
次に,トークンとしてCircuitVQを活用するマスク付き自己回帰モデルであるCircuitARを開発した。
論文 参考訳(メタデータ) (2025-02-18T11:13:03Z) - Supervised Learning for Analog and RF Circuit Design: Benchmarks and Comparative Insights [10.354863964933019]
本研究では,様々な回路タイプにわたる性能仕様から回路パラメータを設計するための教師付きMLに基づくアプローチについて検討する。
その結果,低雑音増幅器などの単純な回路は,平均相対誤差を0.3%以下と極めて精度が高いことがわかった。
異種回路では、トレーニングデータの増加により誤差の88%が減少し、受信側は平均相対誤差を0.23%以下とした。
論文 参考訳(メタデータ) (2025-01-21T02:48:23Z) - Logic Synthesis Optimization with Predictive Self-Supervision via Causal Transformers [19.13500546022262]
LSOformerは、自動回帰トランスフォーマーモデルと予測SSLを利用して、結果の質の軌道(QoR)を予測する新しいアプローチである。
LSOformerは、クロスアテンションモジュールを統合して、回路グラフと最適化シーケンスからの洞察をマージし、QoRメトリクスの予測精度を向上させる。
論文 参考訳(メタデータ) (2024-09-16T18:45:07Z) - CIRCUITSYNTH: Leveraging Large Language Models for Circuit Topology Synthesis [7.131266114437393]
有効な回路トポロジの自動合成を容易にするためにLCMを利用する新しい手法であるCIRCUITSYNTHを導入する。
提案手法は,回路効率の向上と出力電圧の特定を目的とした今後の研究の基盤となる。
論文 参考訳(メタデータ) (2024-06-06T01:59:59Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
本稿では,回路トポロジ生成とデバイスサイズを同時に行う回路グラフニューラルネットワーク(CktGNN)を提案する。
オープンサーキットベンチマーク(OCB: Open Circuit Benchmark)は、オープンソースのデータセットで、10ドル(約10万円)の異なるオペレーショナルアンプを含む。
我々の研究は、アナログ回路のための学習ベースのオープンソース設計自動化への道を開いた。
論文 参考訳(メタデータ) (2023-08-31T02:20:25Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。