Edge Computing for Physics-Driven AI in Computational MRI: A Feasibility Study
- URL: http://arxiv.org/abs/2506.03183v1
- Date: Fri, 30 May 2025 02:35:43 GMT
- Title: Edge Computing for Physics-Driven AI in Computational MRI: A Feasibility Study
- Authors: Yaşar Utku Alçalar, Yu Cao, Mehmet Akçakaya,
- Abstract summary: We propose a novel PD-AI computational MRI approach optimized for FPGA-based edge computing devices.<n>Our results show that this strategy improves computational efficiency while maintaining reconstruction quality comparable to conventional PD-AI methods.<n>Our approach presents an opportunity for high-resolution MRI reconstruction on resource-constrained devices, highlighting its potential for real-world deployment.
- Score: 6.098295105240952
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Physics-driven artificial intelligence (PD-AI) reconstruction methods have emerged as the state-of-the-art for accelerating MRI scans, enabling higher spatial and temporal resolutions. However, the high resolution of these scans generates massive data volumes, leading to challenges in transmission, storage, and real-time processing. This is particularly pronounced in functional MRI, where hundreds of volumetric acquisitions further exacerbate these demands. Edge computing with FPGAs presents a promising solution for enabling PD-AI reconstruction near the MRI sensors, reducing data transfer and storage bottlenecks. However, this requires optimization of PD-AI models for hardware efficiency through quantization and bypassing traditional FFT-based approaches, which can be a limitation due to their computational demands. In this work, we propose a novel PD-AI computational MRI approach optimized for FPGA-based edge computing devices, leveraging 8-bit complex data quantization and eliminating redundant FFT/IFFT operations. Our results show that this strategy improves computational efficiency while maintaining reconstruction quality comparable to conventional PD-AI methods, and outperforms standard clinical methods. Our approach presents an opportunity for high-resolution MRI reconstruction on resource-constrained devices, highlighting its potential for real-world deployment.
Related papers
- DNN-Based Precoding in RIS-Aided mmWave MIMO Systems With Practical Phase Shift [56.04579258267126]
This paper investigates maximizing the throughput of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with obstructed direct communication paths.<n>A reconfigurable intelligent surface (RIS) is employed to enhance transmissions, considering mmWave characteristics related to line-of-sight (LoS) and multipath effects.<n>Deep neural network (DNN) is developed to facilitate faster codeword selection.
arXiv Detail & Related papers (2025-07-03T17:35:06Z) - Fast MRI for All: Bridging Equity Gaps via Training without Raw Data Access [2.512491726995032]
Physics-driven deep learning (PD-DL) approaches have become popular for improved reconstruction of fast magnetic resonance imaging (MRI) scans.<n>PD-DL offers higher acceleration rates than existing clinical fast MRI techniques, but their use has been limited outside specialized MRI centers.<n>We propose Compressibility-inspired Unsupervised Learning via Parallel Imaging Fidelity (CUPID) for high-quality PD-DL training using only routine clinical reconstructed images.
arXiv Detail & Related papers (2024-11-20T03:53:41Z) - Robust plug-and-play methods for highly accelerated non-Cartesian MRI reconstruction [2.724485028696543]
We propose a fully unsupervised preprocessing pipeline to generate clean, noiseless MRI signals from multicoil data.
When combined with preconditioning techniques, our approach achieves robust MRI reconstruction for high-quality data.
arXiv Detail & Related papers (2024-11-04T10:27:57Z) - Accelerating MRI Uncertainty Estimation with Mask-based Bayesian Neural Network [7.062728225568675]
This paper proposes an algorithm-hardware co-optimization flow for high-performance and reliable MRI analysis.
At the algorithm level, a transformation design flow is introduced to convert IVIM-NET to a mask-based Bayesian Neural Network (BayesNN)
At the hardware level, we propose an FPGA-based accelerator with several hardware optimizations, such as mask-zero skipping and operation reordering.
arXiv Detail & Related papers (2024-07-07T23:57:40Z) - Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
This paper proposes an algorithm and hardware co-design framework that can generate field-programmable gate array (FPGA)-based accelerators for efficient BayesNNs.
At the algorithm level, we propose novel multi-exit dropout-based BayesNNs with reduced computational and memory overheads.
At the hardware level, this paper introduces a transformation framework that can generate FPGA-based accelerators for the proposed efficient BayesNNs.
arXiv Detail & Related papers (2024-06-20T17:08:42Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - MA-RECON: Mask-aware deep-neural-network for robust fast MRI k-space
interpolation [3.0821115746307672]
High-quality reconstruction of MRI images from under-sampled kspace' data is crucial for shortening MRI acquisition times and ensuring superior temporal resolution.
This paper introduces MA-RECON', an innovative mask-aware deep neural network (DNN) architecture and associated training method.
It implements a tailored training approach that leverages data generated with a variety of under-sampling masks to stimulate the model's generalization of the under-sampled MRI reconstruction problem.
arXiv Detail & Related papers (2022-08-31T15:57:38Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
We build an early effort to build a Transformer-based MR image super-resolution framework.
We consider two-fold domain priors including the high-frequency structure prior and the inter-modality context prior.
We establish a novel Transformer architecture, called Cross-modality high-frequency Transformer (Cohf-T), to introduce such priors into super-resolving the low-resolution images.
arXiv Detail & Related papers (2022-03-29T07:56:55Z) - Recurrent Variational Network: A Deep Learning Inverse Problem Solver
applied to the task of Accelerated MRI Reconstruction [3.058685580689605]
We present a novel Deep Learning-based Inverse Problem solver applied to the task of accelerated MRI reconstruction.
The RecurrentVarNet consists of multiple blocks, each responsible for one unrolled iteration of the gradient descent algorithm for solving inverse problems.
Our proposed method achieves new state of the art qualitative and quantitative reconstruction results on 5-fold and 10-fold accelerated data from a public multi-channel brain dataset.
arXiv Detail & Related papers (2021-11-18T11:44:04Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.