論文の概要: Encoding of Demographic and Anatomical Information in Chest X-Ray-based Severe Left Ventricular Hypertrophy Classifiers
- arxiv url: http://arxiv.org/abs/2506.03192v1
- Date: Sat, 31 May 2025 13:30:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:13.931385
- Title: Encoding of Demographic and Anatomical Information in Chest X-Ray-based Severe Left Ventricular Hypertrophy Classifiers
- Title(参考訳): 胸部X線による左室肥大分類法における復号化と解剖情報の符号化
- Authors: Basudha Pal, Rama Chellappa, Muhammad Umair,
- Abstract要約: 胸部X線による重症左室肥大を予測するための直接分類フレームワークを提案する。
提案手法は AUROC と AUPRC を高い精度で実現し,特徴表現率の定量化に相互情報ニューラル推定を用いる。
- 参考スコア(独自算出の注目度): 36.052936348670634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While echocardiography and MRI are clinical standards for evaluating cardiac structure, their use is limited by cost and accessibility.We introduce a direct classification framework that predicts severe left ventricular hypertrophy from chest X-rays, without relying on anatomical measurements or demographic inputs. Our approach achieves high AUROC and AUPRC, and employs Mutual Information Neural Estimation to quantify feature expressivity. This reveals clinically meaningful attribute encoding and supports transparent model interpretation.
- Abstract(参考訳): 心エコー法とMRIは心構造を評価するための臨床基準であるが,その使用は費用とアクセシビリティによって制限されており,胸部X線から重症左室肥大を予測し,解剖学的測定や人口統計学的入力に頼ることなく直接分類する枠組みを導入する。
提案手法は AUROC と AUPRC を高い精度で実現し,特徴表現率の定量化に相互情報ニューラル推定を用いる。
これは臨床的に意味のある属性のコード化を明らかにし、透過的なモデル解釈をサポートする。
関連論文リスト
- Classification, Regression and Segmentation directly from k-Space in Cardiac MRI [11.690226907936903]
我々は,k空間データを直接処理するためのトランスフォーマーモデルであるKMAEを提案する。
KMAEは、重要な心臓疾患の分類、関連する表現型回帰、および心臓セグメンテーションタスクを扱うことができる。
心臓MRIにおけるk-space-based diagnosisの可能性について検討した。
論文 参考訳(メタデータ) (2024-07-29T15:35:35Z) - Continuous max-flow augmentation of self-supervised few-shot learning on SPECT left ventricles [0.0]
本研究の目的は, 診断センターとクリニックが, 小型・低品質のSPECTラベルに基づいて自動的に心筋のセグメンテーションを行うためのレシピを提供することである。
SPECT装置の様々な領域における3次元U-Net自己教師学習(SSL)アプローチを強化するために,CMF(Continuous Max-Flow)と事前形状情報の組み合わせを開発した。
論文 参考訳(メタデータ) (2024-05-09T03:19:19Z) - Attribute Regularized Soft Introspective Variational Autoencoder for
Interpretable Cardiac Disease Classification [2.4828003234992666]
臨床医が人工知能モデルの理解と信頼を確実にするためには、解釈可能性が不可欠である。
本稿では,逆向きに訓練された変分オートエンコーダのフレームワーク内で,潜在空間の属性正規化を組み合わす新しい解釈可能な手法を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:20:57Z) - SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
冠状動脈構造の複雑さとX線像の固有ノイズが相まって,この課題には大きな課題が生じる。
心血管狭窄セグメンテーションに対する半監督的アプローチを提案する。
自動冠状動脈疾患診断では異常な成績を示した。
論文 参考訳(メタデータ) (2023-11-17T02:01:19Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Segmentation of Anatomical Layers and Artifacts in Intravascular
Polarization Sensitive Optical Coherence Tomography Using Attending Physician
and Boundary Cardinality Lost Terms [4.93836246080317]
血管内超音波と光コヒーレンス断層撮影は冠状動脈を特徴付けるために広く利用可能である。
畳み込みニューラルネットワークモデルを提案し,その性能を多項損失関数を用いて最適化する。
モデルは2つの主要なアーティファクトのクラスをセグメンテーションし,血管壁領域内の解剖学的層を検出する。
論文 参考訳(メタデータ) (2021-05-11T15:52:31Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。