論文の概要: Human Fall Detection using Transfer Learning-based 3D CNN
- arxiv url: http://arxiv.org/abs/2506.03193v1
- Date: Sat, 31 May 2025 16:58:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:13.9325
- Title: Human Fall Detection using Transfer Learning-based 3D CNN
- Title(参考訳): トランスファーラーニングに基づく3次元CNNを用いたヒューマンフォール検出
- Authors: Ekram Alam, Abu Sufian, Paramartha Dutta, Marco Leo,
- Abstract要約: 意図しない転倒や偶発的な転倒は高齢者にとって重要な健康問題の一つである。
本稿では,事前学習した3D CNNを用いた視覚による転倒検出システムを提案する。
- 参考スコア(独自算出の注目度): 2.744898351429077
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Unintentional or accidental falls are one of the significant health issues in senior persons. The population of senior persons is increasing steadily. So, there is a need for an automated fall detection monitoring system. This paper introduces a vision-based fall detection system using a pre-trained 3D CNN. Unlike 2D CNN, 3D CNN extracts not only spatial but also temporal features. The proposed model leverages the original learned weights of a 3D CNN model pre-trained on the Sports1M dataset to extract the spatio-temporal features. Only the SVM classifier was trained, which saves the time required to train the 3D CNN. Stratified shuffle five split cross-validation has been used to split the dataset into training and testing data. Extracted features from the proposed 3D CNN model were fed to an SVM classifier to classify the activity as fall or ADL. Two datasets, GMDCSA and CAUCAFall, were utilized to conduct the experiment. The source code for this work can be accessed via the following link: https://github.com/ekramalam/HFD_3DCNN.
- Abstract(参考訳): 意図しない転倒や偶発的な転倒は高齢者にとって重要な健康問題の一つである。
高齢者の人口は着実に増えている。
そのため、自動転倒検知監視システムが必要である。
本稿では,事前学習した3D CNNを用いた視覚による転倒検出システムを提案する。
2D CNNとは異なり、3D CNNは空間的特徴だけでなく時間的特徴も抽出する。
提案モデルは,Sports1Mデータセットで事前学習した3次元CNNモデルのもともとの学習重量を利用して,時空間の特徴を抽出する。
SVM分類器のみが訓練され、3D CNNのトレーニングに必要な時間を節約した。
データセットをトレーニングとテストデータに分割するために、階層化されたシャッフル5分割クロスバリデーションが使用されている。
提案した3D CNNモデルから抽出した特徴をSVM分類器に供給し,アクティビティを秋かADLに分類した。
GMDCSAとCAUCAFallの2つのデータセットを用いて実験を行った。
この作業のソースコードは、 https://github.com/ekramalam/HFD_3DCNN.com のリンクからアクセスすることができる。
関連論文リスト
- Video Pretraining Advances 3D Deep Learning on Chest CT Tasks [63.879848037679224]
大規模自然画像分類データセットの事前学習は、データスカース2D医療タスクのモデル開発に役立っている。
これらの2Dモデルは、3Dコンピュータビジョンベンチマークで3Dモデルに勝っている。
3Dモデルのためのビデオ事前トレーニングにより、より小さなデータセットでより高性能な3D医療タスクを実現することができることを示す。
論文 参考訳(メタデータ) (2023-04-02T14:46:58Z) - Intelligent 3D Network Protocol for Multimedia Data Classification using
Deep Learning [0.0]
我々はSTIPと3D CNNの機能を組み合わせたハイブリッドディープラーニングアーキテクチャを実装し、3Dビデオのパフォーマンスを効果的に向上させる。
その結果,UCF101の動作認識のための文献から得られた最新のフレームワークを95%の精度で比較した。
論文 参考訳(メタデータ) (2022-07-23T12:24:52Z) - Keypoint Message Passing for Video-based Person Re-Identification [106.41022426556776]
ビデオベースの人物再識別(re-ID)は、異なるカメラで捉えた人々のビデオスニペットをマッチングすることを目的とした、視覚監視システムにおいて重要な技術である。
既存の手法は主に畳み込みニューラルネットワーク(CNN)に基づいており、そのビルディングブロックは近隣のピクセルを一度に処理するか、あるいは3D畳み込みが時間情報のモデル化に使用される場合、人の動きによって生じるミスアライメントの問題に悩まされる。
本稿では,人間指向グラフ法を用いて,通常の畳み込みの限界を克服することを提案する。具体的には,人手指のキーポイントに位置する特徴を抽出し,時空間グラフとして接続する。
論文 参考訳(メタデータ) (2021-11-16T08:01:16Z) - Continual 3D Convolutional Neural Networks for Real-time Processing of
Videos [93.73198973454944]
連続3次元コンテンポラルニューラルネットワーク(Co3D CNN)について紹介する。
Co3D CNNはクリップ・バイ・クリップではなく、フレーム・バイ・フレームで動画を処理する。
本研究では,既存の映像認識モデルの重みを初期化したCo3D CNNを用いて,フレームワイズ計算における浮動小数点演算を10.0-12.4倍削減し,Kinetics-400の精度を2.3-3.8倍に向上したことを示す。
論文 参考訳(メタデータ) (2021-05-31T18:30:52Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - Would Mega-scale Datasets Further Enhance Spatiotemporal 3D CNNs? [18.95620388632382]
ディープニューラルネットワークの初期において、ビデオ認識の文脈では、2D CNNは3D CNNよりも優れていた。
最近の研究では、3D CNNが大規模なビデオデータセットでトレーニングされた2D CNNより優れていることが判明した。
論文 参考訳(メタデータ) (2020-04-10T09:44:19Z) - Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance
Disparity Estimation [51.17232267143098]
ステレオ画像から3次元物体を検出するための新しいシステムDisp R-CNNを提案する。
我々は、LiDAR点雲を必要とせずに、統計的形状モデルを用いて、密度の異なる擬似地下構造を生成する。
KITTIデータセットの実験によると、LiDARの基盤構造がトレーニング時に利用できない場合でも、Disp R-CNNは競争性能を達成し、平均精度で従来の最先端手法を20%上回っている。
論文 参考訳(メタデータ) (2020-04-07T17:48:45Z) - Human Activity Recognition using Multi-Head CNN followed by LSTM [1.8830374973687412]
本研究では,CNNとLSTMを用いた新しい身体活動認識法を提案する。
提案手法を用いて,従来の機械学習アルゴリズムや他のディープニューラルネットワークアルゴリズムに匹敵する最先端の精度を実現する。
論文 参考訳(メタデータ) (2020-02-21T14:29:59Z) - 2.75D: Boosting learning by representing 3D Medical imaging to 2D
features for small data [54.223614679807994]
3D畳み込みニューラルネットワーク(CNN)は、多くのディープラーニングタスクにおいて、2D CNNよりも優れたパフォーマンスを示し始めている。
3D CNNにトランスファー学習を適用することは、パブリックにトレーニング済みの3Dモデルがないために困難である。
本研究では,ボリュームデータの2次元戦略的表現,すなわち2.75Dを提案する。
その結果,2次元CNNネットワークをボリューム情報学習に用いることが可能となった。
論文 参考訳(メタデータ) (2020-02-11T08:24:19Z) - An Information-rich Sampling Technique over Spatio-Temporal CNN for
Classification of Human Actions in Videos [5.414308305392762]
本稿では,3次元畳み込みニューラルネットワーク(3D CNN)を用いたビデオにおける人間の行動認識手法を提案する。
本稿では,3次元CNNアーキテクチャを用いて特徴量抽出を行い,人間の行動を認識するためのLong Short-Term Memory (LSTM) について述べる。
KTHとWEIZMANNの人間の行動データセットを用いて実験を行い、最先端技術と同等の結果が得られることを示した。
論文 参考訳(メタデータ) (2020-02-06T05:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。