Multi-Spectral Gaussian Splatting with Neural Color Representation
- URL: http://arxiv.org/abs/2506.03407v1
- Date: Tue, 03 Jun 2025 21:36:50 GMT
- Title: Multi-Spectral Gaussian Splatting with Neural Color Representation
- Authors: Lukas Meyer, Josef GrĂ¼n, Maximilian Weiherer, Bernhard Egger, Marc Stamminger, Linus Franke,
- Abstract summary: We present MS-Splatting -- a multi-spectral 3D Gaussian Splatting framework.<n>Our method does not require cross-modal camera calibration.<n>It is versatile enough to model a variety of different spectra, including thermal and near-infra red.
- Score: 8.200719250787651
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present MS-Splatting -- a multi-spectral 3D Gaussian Splatting (3DGS) framework that is able to generate multi-view consistent novel views from images of multiple, independent cameras with different spectral domains. In contrast to previous approaches, our method does not require cross-modal camera calibration and is versatile enough to model a variety of different spectra, including thermal and near-infra red, without any algorithmic changes. Unlike existing 3DGS-based frameworks that treat each modality separately (by optimizing per-channel spherical harmonics) and therefore fail to exploit the underlying spectral and spatial correlations, our method leverages a novel neural color representation that encodes multi-spectral information into a learned, compact, per-splat feature embedding. A shallow multi-layer perceptron (MLP) then decodes this embedding to obtain spectral color values, enabling joint learning of all bands within a unified representation. Our experiments show that this simple yet effective strategy is able to improve multi-spectral rendering quality, while also leading to improved per-spectra rendering quality over state-of-the-art methods. We demonstrate the effectiveness of this new technique in agricultural applications to render vegetation indices, such as normalized difference vegetation index (NDVI).
Related papers
- CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding.<n> variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies.<n>We introduce $textbfCARL$, a model for $textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$ across RGB, multispectral, and hyperspectral imaging modalities.
arXiv Detail & Related papers (2025-04-27T13:06:40Z) - Decoupling Appearance Variations with 3D Consistent Features in Gaussian Splatting [50.98884579463359]
We propose DAVIGS, a method that decouples appearance variations in a plug-and-play manner.<n>By transforming the rendering results at the image level instead of the Gaussian level, our approach can model appearance variations with minimal optimization time and memory overhead.<n>We validate our method on several appearance-variant scenes, and demonstrate that it achieves state-of-the-art rendering quality with minimal training time and memory usage.
arXiv Detail & Related papers (2025-01-18T14:55:58Z) - Multispectral Texture Synthesis using RGB Convolutional Neural Networks [2.3213238782019316]
State-of-the-art RGB texture synthesis algorithms rely on style distances that are computed through statistics of deep features.
We propose two solutions to extend these methods to multispectral imaging.
arXiv Detail & Related papers (2024-10-21T13:49:54Z) - SpecGaussian with Latent Features: A High-quality Modeling of the View-dependent Appearance for 3D Gaussian Splatting [11.978842116007563]
Lantent-SpecGS is an approach that utilizes a universal latent neural descriptor within each 3D Gaussian.
Two parallel CNNs are designed to decoder the splatting feature maps into diffuse color and specular color separately.
A mask that depends on the viewpoint is learned to merge these two colors, resulting in the final rendered image.
arXiv Detail & Related papers (2024-08-23T15:25:08Z) - SpectralGaussians: Semantic, spectral 3D Gaussian splatting for multi-spectral scene representation, visualization and analysis [3.8834382997684087]
We propose a novel cross-spectral rendering framework based on 3D Gaussian Splatting (3DGS)
This framework generates realistic and semantically meaningful splats from registered multi-view spectrum and segmentation maps.
Our contributions address challenges in multi-spectral scene representation, rendering, and editing, offering new possibilities for diverse applications.
arXiv Detail & Related papers (2024-08-13T15:32:54Z) - Splatfacto-W: A Nerfstudio Implementation of Gaussian Splatting for Unconstrained Photo Collections [25.154665328053333]
We introduce Splatfacto-W, an in-trivial approach that integrates per-Gaussian neural color features and per-image appearance embeddings into an rendering process.
Our method improves the Peak Signal-to-Noise Ratio (PSNR) by an average of 5.3 dB compared to 3DGS, enhances training speed by 150 times compared to NeRF-based methods, and achieves a similar rendering speed to 3DGS.
arXiv Detail & Related papers (2024-07-17T04:02:54Z) - WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections [8.261637198675151]
Novel View Synthesis (NVS) from unconstrained photo collections is challenging in computer graphics.
We propose an efficient point-based differentiable rendering framework for scene reconstruction from photo collections.
Our approach outperforms existing approaches on the rendering quality of novel view and appearance synthesis with high converge and rendering speed.
arXiv Detail & Related papers (2024-06-04T15:17:37Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
A universal RS foundation model, named SpectralGPT, is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT)
Compared to existing foundation models, SpectralGPT accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS big data.
Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS big data applications within the field of geoscience.
arXiv Detail & Related papers (2023-11-13T07:09:30Z) - Multiscale Representation for Real-Time Anti-Aliasing Neural Rendering [84.37776381343662]
Mip-NeRF proposes a multiscale representation as a conical frustum to encode scale information.
We propose mip voxel grids (Mip-VoG), an explicit multiscale representation for real-time anti-aliasing rendering.
Our approach is the first to offer multiscale training and real-time anti-aliasing rendering simultaneously.
arXiv Detail & Related papers (2023-04-20T04:05:22Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
We propose a novel Transformer-based method, coarse-to-fine sparse Transformer (CST)
CST embedding HSI sparsity into deep learning for HSI reconstruction.
In particular, CST uses our proposed spectra-aware screening mechanism (SASM) for coarse patch selecting. Then the selected patches are fed into our customized spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel clustering and self-similarity capturing.
arXiv Detail & Related papers (2022-03-09T16:17:47Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.